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1. Title of the Project / Number of Annual Report 
1. Project N  2154 p  The Final Annual Report 
Title: 
“Nanoscale Mechanism of Composite Reinforcement by Fibers and Filler, Theoretical Computation and 
Experimental Validation of the Theory Using Rubber/Short Carbon Fiber Compounds” 
2. Contracting Institute: 

Dorodnicyn Computing Centre of Russian Academy of Sciences (CCAS) 
3. Participating Institutes: 

Institute of Applied Mechanics of Russian Academy of Sciences RAS (IPRIM) 
4. Project Manager:    
Sergey A. Lurie,  
Phone number: 7(095)135-6190, Fax numbers:  7(095)135-6190  and  7(095)135-6159 
E-mail address: lurie@ccas.ru 
5. Commencement Date: 01.04.2002,  

   Duration: 36 months 
6. Brief description of the work plan: objective, expected results, technical approach 
Objective: 

- The aim of the project is to determine effective mechanical characteristics and to predict behavior 
of the composite enforced with carbon fibers and nanoparticles, from the point of view of 
enhanced methods of classical continuum  mechanics and composite mechanics. 

The following statements determine aims of the current stage: 
- Modeling of adhesion interaction of the polymer and inclusions, estimation of properties of the 

interface layer, its thickness, and dependence of its properties on the properties of the matrix and 
inclusion.  

- Development of the theoretical basis of modeling of disperse enforced composites accounting for 
the scale effects. 

- Theoretical and numerical modeling of deformation of composite as a whole accounting for 
cohesion and adhesion interactions. 

- Writing and testing algorithms and methods of calculations of effective characteristics of the 
disperse composites. 

- Development of quantum-mechanical and quantum-chemical modeling. 
- Description and predictions of properties of the composites. 
- Experimental verification of the theoretical statements and results, which is one of the main aims. 
Expected results: 
- To obtain the dependence of the change of elastic parameters of the composites reinforced with 

both isotropic and anisotropic inclusions (nanotubes) for various types of particles distributions 
over orientation. 

- To write the dependence of the composite elastic moduli accounting for the finiteness of 
inclusions concentration (the solutions are obtained in the form of dependences of the moduli on 
concentration for various relative nanotubes lengths). 

- To give the algorithm of an approximate calculation of the effective characteristics of nano-
composite, consisting of the matrix, nano-inclusions taking into account interphase layer of the  
inclusions and of the  matrix surrounding the nano-particles. 

- To write a mechanical model of the nanotube, surrounded by the polymer matrix, and to obtain the 
distribution of the shear stresses, which depend on behavior of the material in the interface layer. 

- To develop the interphase layer theory of cohesion-adhesion interactions as a display of non-
classical phases properties in the contact zone, and apply its to the mechanics of disperse 
composites.  
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- To estimate the properties of the interface layer and effective properties of the equivalent 
homogeneous medium and to give an example of the solution for the problem of identifying non-
classical properties of the composite. To find analytical approximation formulas for the composite 
characteristics allowing to forecast the composite properties for the wide range of volumetric 
concentration and diameters of the inclusions. 

- To obtain the generalized of the integral Eshelby’s formulas, which allows determining the 
increase in the energy in the fragment due to inclusion of another material and to obtain the 
solution of the generalized of the fundamental Eshelby’s problem for an isolated inclusion in the 
framework of the theory of the interphase layer (adhesion-cohesion model). 

- To describe physical and mechanical properties of the composite with high-elastic matrix on the 
base of investigations of microstructure. 

- With the help of direct numerical modeling: 
o to study interaction of polymer molecules with the surfaces of technical carbon; 
o to describe structural and energetic characteristics of mixtures of polymer and carbon 

microclasters; 
o to investigate the structure as well as energetic and mechanical properties of model 

particles of technical carbon; 
o to determine influence of the mentioned physical-chemical factors to micromechanical 

behavior and properties of the model composite media and the related effect of 
enforcement. 

Technical Approach: 
 The following approaches were used: 
Variational methods and methods of variational calculus, tensor algebra, methods of mathematical 
physics, methods of mechanics of solids, methods of mechanics of composites (methods of equivalent 
inclusions of Eshelby, method Mori-Tanaka, mechanical model of a nanotube embedded to polymer 
matrix, development of Kelly-Tyson model) were used to develop mathematical micro- and macro- 
models of composite materials, investigation influence of structural parameters to behavior of 
heterogeneous media, enhanced study of of properties of new composites. Numerical modeling on the 
base of a new blocked analytical-numerical method was applied to 2-D and 3-D domains. Physical 
molecular modeling and Monte-Carlo method were applied to investigate molecular interactions and 
transformations. Methods of parameters identification on the base of experimental data were used for 
visco-elastic media. Experimental investigations of the composite samples (field resins) were also used.  
 

7. Technical progress during the second year (for 3nd annual reports)    
• A set of particular solutions was obtained for composite reinforced both isotropic and anisotropic 

inclusions (nanotubes). Three types of space distributions of inclusions were studied: unidirectional, 
isotropic and in-plane distribution of the inclusions. The solutions were obtained in the form of 
dependences of moduli versus volumetric effective concentration of the inclusions for various aspect 
ratios of the latter.  

• It was shown that according to Mori-Tanaka’s method within the diapason of concentrations of 
interest the dependences of moduli on the concentration very slightly deviate from the linear ones. 
Hence, for all configurations of interest the linearised (on concentration) dependences were obtained 
for the changes of elastic moduli due to presence of inclusions according to the theory of dilute 
concentrations, which simplifies the procedure and visualization significantly. 

• An algorithm for approximate calculating the effective characteristics of three phase composite 
material formed by the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions 
of the third phase was presented.  
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• The mechanical model of the nanotube embedded in the polymer matrix was proposed. The model 
takes into attention the dependence of the interface shear stresses (and, therefore, the adhesion 
parameters) on the displacements of the nanotube axis, the elastic properties of the polymer matrix 
and the nanotube, and on the thickness of the adhesion layer between the matrix and the nanotube.  

• The theory of interphase layer was constructed which models the interactions of adhesion and 
cohesion types on the base of a continuum model accounting for scale effects. 

• Approximate analytical estimations of Young’s and shear moduli of the interphase layer are given. In 
addition to the previous stages of the work, a model of adhesion interaction is given. The example is 
given illustrating that the effect of adhesion may lead to both increase (for an ideal contact) and 
decrease (for the case of damage) of the effective stiffness of a two-phases sample.  

• Composite materials are considered taking into account the theory of interphase layer (local cohesion 
and adhesion effects). The account of these local effects allows to model effect of strengthening of 
the filled composite materials 

• Approximate analytical estimations of Young’s modulus of the composite materials taking into 
account the local cohesion and adhesion effects are established. It was shown, that usage of simple 
enough modelling statements of the problems within the framework of the theory of an interphase 
layer allows to describe characteristics of composites well enough. Such solutions give a good 
consent with results that are submitted in work (Odegard et al, 2002) and experimental dates.  

• The consecutive concept of the quantum-mechanical description of materials was formulated. The 
suggested concept allows to connect macro- and micro-characteristics of materials with parameters of 
potentials used for modelling continuum mediums as ensemble of the particles connected by special 
character of interactions.  

• The effective block analytical-numerical method was developed. A generalization of algorithm of a 
block analytical-numerical method is performed for spatial problems (3D problem) with an inclusion 
of an arbitrary shape and its partial realization is made. Test calculations were made for the classical 
component, confirming efficiency of a method. 

• The problem of the identification of the model parameters on the base of more complete description 
was considered. The identification problem of determining of mathematical model parameters was 
investigated using experimental data. The diapason of parameters (concentration and sizes of the 
inclusions) for which the model agrees well with experimental dates. 

• On the basis of molecular models of saturated hydrocarbonic polymers (prototype of elastomers) and 
nano-model of technical carbon by means of quantum-mechanical approach and direct quantum-
chemical numerical simulation, the computational experiments for polymer composites filled with 
disperse particles were gone on. An interconnection between texture and properties of surface for 
pure graphite fillers and for hydrogen terminated graphite surfaces is ascertained. 

• The method of identification of constitutive material parameters of heterogeneous viscoelastic media 
was elaborated for description of geometrical non-linear behavior of considered systems under finite 
deformations. It was shown, that on the base of evaluation of alteration some material parameters, one 
can adequate characterize an ability to damage of this materials. 

• For modeling reinforcement effect for polymer high-elastic composites (rubbers) multiscale 
hierarchical approach has been used. The approach had some important steps, that are: 

-Atomic-molecular computer description the behavior of nano- and mesostructures for 
representative elements of volume of heterogeneous polymer composites media. 

-Atomic-molecular experimental investigations of the properties of surface of reinforced media 
by means of complex of atomic-forced, tunnel-scanning, dynamic-forced microscopes. 

-Physical description micro- and macromechanics of composite high-elastic heterogeneous media 
taking into account the properties of interphase layers. 
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-Phenomenological description of behavior of high-elastic heterogeneous media by small (linear) 
and finite (large) deformations and an identification of non-linear models for description of behavior 
by deformation. 

-Experimental evaluation of the complex of viscoelastic mechanical properties for model rubber 
compounds on the basis of natural rubber filled with black and white soot (ten different sorts) by 
small (linear) and finite (up to destruction) deformation modes. Evaluation of relaxation properties. 
Juxtaposition with prognosis of previous levels. 

• By modeling of atomic-molecular mesoscopic systems a set of new algorithms and programs based 
on quantum-mechanical approach, Monte-Carlo method and molecular dynamics methods, developed 
by the authors, were used. An influence of different physico-chemical factors, that is, properties of 
surface of solid phase, the nature of polymer molecules, some important reinforced additives end etc., 
on character of interaction of constituents of heterogeneous media were analyzed.  

• A comparison of viscoelastic behavior of rubber compounds filled with different sorts of reinforced 
particles by small and finite (up to destruction) deformation was done experimentally and 
theoretically, during the procedure of identification. Validity of effect of reinforcement on the basis of 
the analysis of relaxation properties of materials content the different sorts of technical carbons and 
silica had also been made. 

 
8. Technical progress during the year of reference 

For the last year the work was conducted in full agreement with the problems and main stages formulated 
in the Research Plan. In addition to the problems pointed in the Research Plan, additional work was done 
discussed with the employer. 

The key achievements are related mainly to the following results: 
According to the Working Plan the following works have been done and the following main results 
achieved: 
• The algorithm for calculating the effective characteristics of three phase composite material 

formed by the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions              
of the third phase is developed. Variants of both direct and inverse problems are considered   
for both thick and thin intermediate layer. In the frame of the approach the effects caused by  
anisotropy are accounted. An example of solving inverse problem has been presented:  
estimation of the properties of intermediate layer 

• During the reported period we proposed a mechanical model of the interface adhesion of polymer 
matrix and nanotubes accounting for the dependencies of the shear stresses between matrix and  
nanotube versus the main physical-mechanical parameters of the nanocomposite material: -the  
parametric analysis of the model parameters on the nanotubes and the interface layer stresses states  
was performed; -the asymptotic cases of the stresses states were considered and analyzed; -the multi- 
parametric model was proposed  for the analysis of properties of new nanocomposite materials and for  
analysis of the experimental data. 

• On the basis of the previous researches the consistent and correct theory of interphase layer was   
formulated and analyzed as whole. The theory of interphase layer includes the following moments: -the 
formal mathematical statement, -the physical constitutive equations, - the identification problem of the  
parameters determining nonclassical effects, -the qualitative analysis of the theory-analytical  
estimations of properties of an interphase layer, -the qualitative analysis of the theory-estimation of an  
interphase layer influence on the effective characteristics of a composite, -some application for fracture 
mechanics, quantum mechanical approaches, -numerical modeling of the stress state of the cell with 
inclusions and some notes about specific averaging procedures for filled composites, previously  
results of the generalized Eshelby problem and its application. 
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• A new general kinematic theory of defects in continuous media, the general mechanisms of existence  
of defects, their generation (or birth) and disappearance (or healing) were establish. 

• The generalized model of pseudocontinuums are obtained for which a surface tension, static 
friction bodies with ideally smooth surface of contact, the meniscus, wettability and capillarity are   
modeled as special effects within the framework of unified continual description. All these special  
effects are united by one property, they are the scale effects in continuums.  

• Using asymptotic approach the correct algorithm for the account of damage is proposed on the base 
strong generalized model of the mediums with reserved dislocation.  

• On the basis of procedure of asymptotic homogenization of composite materials with a periodic 
microstructure it was received the formula for effective characteristics of composite materials with 
account of the local effects. 

• With the help of a block method of multipoles distribution of energy density and components of stress 
tensor in micro cell with inclusion is simulated. The features of the current realization of algorithm of a 
block method are shown, which require its technical modification in the way of improvement of block 
system of the equations solver and more accurate normalization of joining functionals.  

• The algorithm of the solution of a problem of model parameters identification has been developed 
according to experimental researches for the general three-dimensional case. The series of the 
calculations has been made. 

• A new approach to model and investigation both the texture and the mechanical characteristics of large 
molecular systems by Monte-Carlo method has been developed. As a base of the method is an 
unorthodox algorithm allowed to make a classical Metropolis procedure for a few polymer molecules. 
Algorithm under consideration belongs to class of program which use space decomposition and has 
high grade of calibration. The structures of model mixtures of n-pentane and carbon microclusters C38 
(graphite type) as prototype of reinforced rubber composites have been investigated. It was shown the 
strong dependence the grade of associate of carbons microclusters on form of its surface. Chemical 
modification of components of mixture substantially influences on structure and mechanical properties 
of materials under study. So, aquation of carbon microclusters leads to decreasing of middle value of 
potential energy of particles. We proposed the method and investigated the mobility of polymer 
molecules close to surface of particle of filler. It was fixed the presence of layer with limited mobility 
around area of contact “polymer – graphite”. It was developed the method of evaluation of shear 
modulus for composite microcluster during the model by Monte-Carlo method. Quantum-Chemical 
Approach. 

• At given stage of work in course of modelling it was obtained that maximal shear force for polymer 
particle adsorbed on carbon surface was found approximately 3 times higher than for polymer in a 
polymeric matrix. Owing to rather weak however quite sufficient for immobilization of polymeric 
chain segments on the carbon surface Van-der-Waals forces, around carbon filler particles some 
condensed layer of rubber is formed with the lowered mobility of chain segments which most likely is 
responsible for strengthening of organic polymers by filling them with high dispersed carbon. 
Summarizing in should be mentioned, that in the given section the technique offered earlier is tested on 
an example of calculation of molecular friction in the complex system consisting of organic polymer 
and carbon filler. The reinforcing effect of pure nonterminated carbon fillers is the best. Some 
conclusions about impact of chemical nature of the polymer matrix on the interaction of the polymer 
segments with surface of soot fillers have been done. Aggregation of the soot particles can be 
prevented by adsorption interlayer of polymer between the soot particles. Adsorption of water in the 
interparticle interface can be considered as competitive process for polymer adsorption. For the 
formation of the contact polymer-filler water layer on the soot surface has to be removed. Hence the 
best reinforcement can be reported for the combination of isoprene-amorphous carbon and the worth 
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for system polyethylene-amorphous carbon. Obtained dependencies of polymer molecule cohesion 
with carbon particle surface (or of the highest forces of microscopic friction) are in a good accordance 
with calculated geometrical and energetic characteristics. The best cohesion of isoprene chain with 
filler particle surface (the highest forces of microscopic friction) was obtained for the system isoprene-
silica. A little worth is cohesion of isoprene with carbon black or soot. Such fillers as fullerene and 
high dispersed carbon tubes represent lower forces of adhesion. As it is seen from the obtained results 
enthalpy of binding of rubber chains on a clay surface and force of microscopical friction in this 
system, which interconnected with cohesion is strongly depended on modification of clay surface by 
hydrophobic agent (organic cation). The best case can be observed if use organic cations with middle-
sized chains at about 15-20 monomer units and various modification of uncharged end providing better 
hydrophobic binding with rubber chains. 

• During the molecular-dynamic modelling it was shown, there is the discrepancy between behaviour of 
polyethylene and polyisoprene chains under their interaction with carbon fillers. The polyethylene 
chains sharply change their configuration on time and always furls into ball both in case of contact to 
carbon particles and without. Materials with polyethylene matrix practically do not keep an initial 
configuration and quickly jump in amorphous condition, aggregated around carbon particle. 
Polyisoprene chains, contrariwise, keep initial structure and injection into system of carbon filler 
deepens this tendency. Polyisoprene’s component is stabilized in presence of carbon filler. As 
structural so energetic results of molecular dynamic calculation testify about. Injection into composite 
system polyisoprene – carbon filler some water destabilizes appropriate adsorption complexes, but at 
this case the system keeps the shape of its structure pretty long. 

• To investigate the microstructure of rubber composites the method of dynamic forced microscopy and 
3D-optical interferential microscope have been used. Different sorts of technical carbons and samples 
of rubber compounds filled with active particles have been analyzed. Microstructure investigations of 
geometry of surface of particles of disperse filler and aggregations of those inside elastomeric matrix 
gave us very useful information for verification of theoretical and model evaluations of parameters of 
microclusters of composite polymeric structures. The samples of natural rubber filled with 
montmorillonite (5, 20, 40, 60% vol.) and samples of natural rubber filled with combined particles 
(technical carbon and montmorillonite) have been investigated. Rheological data which have been 
made during full-scale investigations let us to evaluate some important relaxation parameters and, first 
of all, the spectrum of relaxation time distribution. It was systematize the data about influence of 
different sorts of filler on complex of rheological and relaxation parameters, which govern to 
viscoelastic behavior above media under deformation. Such information is important for the setup of 
optimal processing technology of the composite compounds into articles. 

• It was accomplished the task of identification of nonlinear model for viscoelastic media on the basis of 
the nonlinear integrated Hammerstein’s operator. Is shown, that this operator with a nucleus 
synthesized on calculation of a relaxation spectrum, not always provides qualitative identification of 
model at the large deformations. The lacks of application of concept of a relaxation spectrum in models 
force us to pass to other type of models based on neural networks. The technique of synthesis of neural 
networks for the decision of a concrete mathematical task is given. The detailed block diagrams of 
neural networks for the decision of the specified kind of tasks are given. It is established, that during 
training and adaptation of neural network are frequently observed long convergence iterative 
procedures to extremal of functional. Last circumstance compels to use methods of regularization by 
training of neural models. Synthesis and analysis of neural work model to describe the behavior of 
viscoelastic media shows, that to accomplishment of required workable accuracy of neural network 
without using the feedback (small mistake of training), it is necessary to interpolate the experimental 
data in order to expand a dimension of vectors. 
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• The algorithm for designation strength characteristics of heterogeneous media has been proposed. 
Justification of entered idea about stress and strain concentration tensors is shown. Consideration of 
properties of symmetry for periodicity cells allows to simplify a calculation the effective stiffness 
tensor of those. 

 
 
See at the end of the report the following forms: 
9. Current technical status ,  10.Cooperation with foreign collaborators,  11. Problems encountered and 
suggestions to remedy,  12. Perspectives of future developments of the research/technology developed 
 
 

PREFACE 
(Compliance with tasks and milestones as described in the work plan) 

The final report contains work executed according to the plan and also brief generalization of the results 
received at the previous stages  of work under Project. 
The investigations were elaborated in the complete correspondence with coordinated and authorized Plan 
of Work , within the framework of following tasks and subtasks of the Project  
 
Problem 1   
Development of molecular models of the interface layers for reinforced composites and development of 
molecular models of interphase layers for reinforced matrix composites and description of physico-
mechanical properties of the composites with viscoelastic matrix. The methods of description of physico-
mechanical properties of the composites with polymeric matrix on the base of microstructural approach. 
Problem 2 
Development of the block structure and realization of the analytic-numerical method for the media with 
nanoinclusions and of an effective method of calculation of the average properties for the heterogeneous 
media and its realization. Development of the analytic-numerical method for the media with 
nanoinclusions, arbitrarily oriented in the space and containing a boundary layer: -calculation of the stress 
distribution and the average properties of the media based on the complete version of the program for 
calculation and optimization of heterogeneous media reinforced by nanoinclusions with a boundary layer 
Problem 3 
The experimental and theoretical assessment of the physico-mechanical properties of the disperse 
composites. Studying of the macromechanical properties (effective and strength parameters etc.) of the 
heterogeneous media as a whole. Verifications of some hypothesis and approaches used in the 
calculations and reconsideration of some hypothesis and approaches used in the calculations.  
 
Problem 4  
Estimation of an influence of the shape, dimensions, of rigid inclusions and  spatial distribution of the 
inclusions (its statistical characteristics) of to the increase in the material stiffness. The comparison with 
the experimental data and development of preliminary  recommendations for improving composite 
deformation characteristics by adjusting its  microstructure. 
 
Problem 5 
Modeling and prediction of macroscopic properties of materials fabricated from polymer matrix and 
nanoparticles or nanotubes.  Analysis of the adhesion strength at the nanotube - polymer matrix interface. 
Prediction of macroscopic properties of materials fabricated from polymer matrix and nanoparticles or 
nanotubes. Calculating of the stress-strain state characteristics. 
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Task  6.    Simulation of the continuum behavior with internal degree of freedoms for a description of the 
composite materials reinforced by fillers.  Calculating of the nano-particles stiffness. Formulation of the 
relations for moment continuums with an additional kinematics degree of freedom ( the set models of the 
Cossera type).  Simulation of mediums with a continuous field of defects (damage accumulation models) 
by variation procedures. Simulation of composites as a heterogeneous continuum with a field of defects 
(fillers). Prediction of the mechanical effective properties of composites with shot fibers compounds.  
 
Problem 7 
Definition of the unknown parameters of the model to fit the experimental data. Development of the 
numerical algorithm for the calculation of Gradient of cost functional and the development of the 
appropriate approximation for the conjugate problem (with the aid of Fast Automatic Differentiation 
technique); the choice suitable numerical code for the optimization of functional 
 
Present Final Technical Report includes complete discussion of these products: 

• Development of numerical methods for a calculation of the media with inclusions. 
• The experimental and theoretical assessment of the physico-mechanical properties of the disperse 

composites. 
• Simulation of the continuum behavior with internal degree of freedoms for a description of the 

composite materials reinforced by fillers. 
• Definition of the unknown parameters of the model to fit the experimental data.  
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SUMMARY 
A number of important particular cases, for which asymptotical representations are possible, were 

pointed out: flat inclusions (nano-plates), and needle-like inclusions (nano-tubes). The combined 
influence of the shape and relative stiffness of inclusions was investigated; it was shown that the presence 
of two parameters (the ratio of maximal an minimal dimensions of the inclusion and relative stiffness of 
inclusions) leads to non-uniform limit transition, which restricts the area of applicability of known 
classical asymptotical formulae. The areas of applicability of asymptotical formulae were obtained 
(appears to be for the first time).  It was shown that the main influence is due to some particular 
combinations of elastic parameters of inclusions, and these combinations were pointed out. For the 
composites on the base of nano-tubes three types of space distribution were considered: random, aligned 
and transverse (all inclusions lay in parallel planes). The solution for last case appears to be obtained for 
the first time.   

Originally, all the solutions were obtained for the small concentration of inclusions. The influence 
of concentration were then accounted for with the help of differential self-consistent method and the 
method of effective field (Mori-Tanaka). The former appears to be more strict and physically justified, 
however it leads to necessity to solve systems of differential equations. The obtained results appear to be 
important as it are, as well as an useful tool for constructing more advanced models such as three-phases 
models, accounting for the presence of an intermediate layer between the matrix and inclusions.  

The current report continues research of properties of composite materials, determined by the 
parameters of the matrix and filler. An algorithm for approximate calculating the effective characteristics 
of three phase composite material formed by the matrix, nano-tubes (or disk-like nano-particles) and 
surrounding them regions of the third phase is presented. Variants of solutions for both direct and inverse 
problems have been suggested. 

According to the working plan the modeling of the nanotube-polymer matrix adhesion was. we 
continued studies modeling of the nanotube-polymer matrix adhesion. The statement of the problem and 
all equations were presented in the preceding reports in details. In this final report the analysis of the 
computation results, obtained according to the model proposed in the preceding reports is presented. 

A new general theory of defects in continuous media is introduced. The general mechanisms of 
generation and healing of defects are established. The kinematic description of continuum media with 
defects is presented. The definition of defects of different levels is given, and the classification of 
continuous media with defects is introduced. The hierarchic structure of the theory of defects is discussed. 
A new broad class of defects of new types is established and interpreted. It is shown that the existence of 
new classes of defects is directly connected with some known theoretical and experimental data on the 
possibility of generation of such defects as dislocations and disclinations. In particular, it is shown that 
the generation of dislocations is necessarily connected with the existence of disclinations. The formal 
class of defects being a source of disclinations is specified. A formal generalization of classification of 
defects is developed to include the defects of any finite level. The development of consistent theory of 
defects is very important from both, fundamental and applied viewpoints. The potential applications 
include, in particular, the modeling of dispersed composite materials, porous media, dynamics of surface 
effects, crackling, cavitation and turbulence. 
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The correct medium models with the microstructure (by the Mindlin’s definition) investigated in 
this part of work. The set of constitutive equations is determined and the corresponding boundary 
problem statement is formulated. It’s demonstrated, that concerned medium models are not only model 
the scale effects, but also are the base for description of rather wide spectrum of the adhesion interactions. 
In this work the principal attention is focused on analysis of the physical part of the model. For the first 
time the interpretation of all the physical characteristics is given, which are described the non-classical 
effects, as well as description of adhesion mechanical parameters is given. The submitted generalized 
model of mechanics of continua as a whole is theoretical model in which a surface tension, static friction 
bodies with ideally smooth surface of contact, the meniscus, wettability and capillarity are modeled as 
special effects within the framework of unified continual description. All these special effects are united 
by one signature they are the scale effects in continuums. 

The test problems allowing to define all spectrum of modules of elasticity are established. Thus, 
formulas for definition of characteristics of a researched material both damaged, and the non-damaged 
mediums are established. In essence, algorithms of definition of all spectrum of physical constants for 
mediums with fields of defects - dislocations (the filled composites, porous environments), taking into 
account scale effects are offered. 

The Klapeiron’s and Dupre’s  theorems were proved for the pseudocontinuum model with scale 
effects of the cohesion  and adhesion types.  

The algorithm  of the damage accumulation estimation (development of porosity and so on), was 
proposed on the base strong generalized model of the mediums with reserved dislocation.  The asymptotic  
method of the reduced loadings was proposed, as theoretically proved way of the account of the damage 
accumulation  in the filled composites and anisotropic composite materials under various conditions of 
loading. 

On the basis of the previous researches the consistent and correct theory of interphase layer as 
whole was   formulated and analyzed. The analytical estimations of the interphase layer properties, 
composite properties were done, some particular tasks (Eshelby problem) and applications were 
considered and identification problem for the model parameters were solved.    

With the help of a block method of multipoles distribution of energy density and components of 
stress tensor in micro cell with inclusion is simulated at variation of cohesion field parameters and of 
inclusion orientation inside a cell that has significance for quality evaluation of influence of cohesion 
fields and for calculation of effective characteristics of materials with random distribution of inclusions. 

On the basis of procedure of asymptotic homogenization of composite materials with a periodic 
microstructure it was received the formula for effective characteristics of composite materials with 
account of the local effects. 

As a fundamental background of theory of reinforcement of rubber composites the multiscale 
hierarchical model (from nano- to mega-) and approach, which consider rubber composite as non-linear 
heterogeneous multicomponent medium is proposed. Description of the properties of above medium is 
made taking into account the physico-chemical and micromechanical peculiarities of its components. The 
unorthodox algorithms for description of nano- and mezo- structural and mechanical properties of given 
sorts of medium have been developed by the authors. On the base of above algorithms in parallel regimes 
of calculations by supercomputer numerous computational experiments (methods of Monte-Carlo, 
molecular dynamics, quantum mechanics) have been made. Representative volumes of medium under 
consideration have kept up to 106 atoms and molecules that correspond to microclusters of real 
composite’s structures. The general peculiarities of formation the microstructure of polymeric 
composites, consisted of different polymeric matrixes (the thermoplastics, the elastomers, the 
thermoreactoplastics) and the active fillers (black and white soot, fullerens, nanotubes, montmorillonite), 
terminated by different chemical groups have been elaborated. It was separately investigated an influence 
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of molecular water inside a microcluster on the micromechanical behavior of above media. A correctness 
of atomic-molecular computational model under study is verified by means of nano- and microstructure 
experiments. Constitutive micromechanical rheological equations have been constructed on the base of 
unorthodox integral models of viscoelastic media, using non-linear Hammerstein’s type operators. In this 
view the method of theoretical and experimental identification have been developed. The availability of 
neural network models for identification of viscoelastic and relaxation properties of composite’s polymer 
media has also been discussed. The results of theoretical and numerical description have verified by 
means of numerous experimental investigations of model elastomeric compounds on the base of natural 
rubber filled with different sorts of disperse particles (black and white soot, montmorillonite). Both the 
structure characteristics (methods of dynamic forced microscopy and 3D optical interferential 
microscopy) and the viscoelastic (rheological) properties have been tested. The last one has investigated 
in wide range of regimes and parameters of deformations and temperatures. To estimate the efficient 
(average) macrocharacteristics of strength properties of heterogeneous media (rubber composites, 
particularly) a new method has been proposed. The evaluation of effective mechanical and strength 
properties of composites appoints the operational merits of those. Above stage of work logically finalizes 
the multiscale hierarchical description of behavior of reinforcement rubber composite. 

 
 
All of the stages of work according to scientific schedule for the four quarters have made 

consummately. 
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6. Objectives of the Project: 

- The aim of the project is to determine effective mechanical characteristics and to predict behavior 
of the composite enforced with carbon fibers and nanoparticles, from the point of view of 
enhanced methods of classical continuum  mechanics and composite mechanics. 

The following statements determine aims of the current stage: 
- Modeling of adhesion interaction of the polymer and inclusions, estimation of properties of the 

interface layer, its thickness, and dependence of its properties on the properties of the matrix and 
inclusion.  

- Development of the theoretical basis of modeling of disperse enforced composites accounting for 
the scale effects. 

- Theoretical and numerical modeling of deformation of composite as a whole accounting for 
cohesion and adhesion interactions. 

- Writing and testing algorithms and methods of calculations of effective characteristics of the 
disperse composites. 

- Development of quantum-mechanical and quantum-chemical modeling. 
- Description and predictions of properties of the composites. 
- Experimental verification of the theoretical statements and results, which is one of the main aims. 

for visco-elastic media. Experimental investigations of the composite samples (field resins) were also 
used.  
 
7. Scope of Work and Technical Approach: 
The final report contains work executed according to the plan and also brief generalization of the results 
received at the previous stages  of work under Project. 
The investigations were elaborated in the complete correspondence with coordinated and authorized Plan 
of Work , within the framework of following tasks and subtasks of the Project  
Problem 1   
Development of molecular models of the interface layers for reinforced composites and development of 
molecular models of interphase layers for reinforced matrix composites and description of physico-
mechanical properties of the composites with viscoelastic matrix. The methods of description of physico-
mechanical properties of the composites with polymeric matrix on the base of microstructural approach. 
Problem 2 
Development of the block structure and realization of the analytic-numerical method for the media with 
nanoinclusions and of an effective method of calculation of the average properties for the heterogeneous 
media and its realization. Development of the analytic-numerical method for the media with 



 

nanoinclusions, arbitrarily oriented in the space and containing a boundary layer: -calculation of the stress 
distribution and the average properties of the media based on the complete version of the program for 
calculation and optimization of heterogeneous media reinforced by nanoinclusions with a boundary layer 
Problem 3 
The experimental and theoretical assessment of the physico-mechanical properties of the disperse 
composites. Studying of the macromechanical properties (effective and strength parameters etc.) of the 
heterogeneous media as a whole. Verifications of some hypothesis and approaches used in the 
calculations and reconsideration of some hypothesis and approaches used in the calculations.  
Problem 4  
Estimation of an influence of the shape, dimensions, of rigid inclusions and  spatial distribution of the 
inclusions (its statistical characteristics) of to the increase in the material stiffness. The comparison with 
the experimental data and development of preliminary  recommendations for improving composite 
deformation characteristics by adjusting its  microstructure. 
Problem 5 
Modeling and prediction of macroscopic properties of materials fabricated from polymer matrix and 
nanoparticles or nanotubes.  Analysis of the adhesion strength at the nanotube - polymer matrix interface. 
Prediction of macroscopic properties of materials fabricated from polymer matrix and nanoparticles or 
nanotubes. Calculating of the stress-strain state characteristics. 
Task  6.    Simulation of the continuum behavior with internal degree of freedoms for a description of the 
composite materials reinforced by fillers.  Calculating of the nano-particles stiffness. Formulation of the 
relations for moment continuums with an additional kinematics degree of freedom ( the set models of the 
Cossera type).  Simulation of mediums with a continuous field of defects (damage accumulation models) 
by variation procedures. Simulation of composites as a heterogeneous continuum with a field of defects 
(fillers). Prediction of the mechanical effective properties of composites with shot fibers compounds.  
Problem 7 
Definition of the unknown parameters of the model to fit the experimental data. Development of the 
numerical algorithm for the calculation of Gradient of cost functional and the development of the 
appropriate approximation for the conjugate problem (with the aid of Fast Automatic Differentiation 
technique); the choice suitable numerical code for the optimization of functional 

 
8. Technical Progress During the Year of Reference 

For the last year the work was conducted in full agreement with the problems and main stages formulated 
in the Research Plan. In addition to the problems pointed in the Research Plan, additional work was done 
discussed with the employer. 

The key achievements are related mainly to the following results: 
According to the Working Plan the following works have been done and the following main results 
achieved: 
• The algorithm for calculating the effective characteristics of three phase composite material 

formed by the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions              
of the third phase is developed. Variants of both direct and inverse problems are considered   
for both thick and thin intermediate layer. In the frame of the approach the effects caused by  
anisotropy are accounted. An example of solving inverse problem has been presented:  
estimation of the properties of intermediate layer 

• During the reported period we proposed a mechanical model of the interface adhesion of polymer 
matrix and nanotubes accounting for the dependencies of the shear stresses between matrix and  
nanotube versus the main physical-mechanical parameters of the nanocomposite material: -the  
parametric analysis of the model parameters on the nanotubes and the interface layer stresses states  



 

was performed; -the asymptotic cases of the stresses states were considered and analyzed; -the multi- 
parametric model was proposed  for the analysis of properties of new nanocomposite materials and for  
analysis of the experimental data. 

• On the basis of the previous researches the consistent and correct theory of interphase layer was 
formulated and analyzed as whole. The theory of interphase layer includes the following moments: -the 
formal mathematical statement, -the physical constitutive equations, - the identification problem of the  
parameters determining nonclassical effects, -the qualitative analysis of the theory-analytical 
estimations of properties of an interphase layer, -the qualitative analysis of the theory-estimation of an  
interphase layer influence on the effective characteristics of a composite, -some application for fracture 
mechanics, quantum mechanical approaches, -numerical modeling of the stress state of the cell with 
inclusions and some notes about specific averaging procedures for filled composites, previously  
results of the generalized Eshelby problem and its application. 

• A new general kinematic theory of defects in continuous media, the general mechanisms of existence  
of defects, their generation (or birth) and disappearance (or healing) were establish. 

• The generalized model of pseudocontinuums are obtained  for which a surface tension, static friction 
bodies with ideally smooth surface of contact, the meniscus, wettability and capillarity are  modeled as 
special effects within the framework of unified continual description. All these special effects are 
united by one property, they are the scale effects in continuums.  

• Using asymptotic approach the correct algorithm for the account of the accumulation damage is 
proposed on the base strong generalized model of the mediums with reserved dislocation.  

• On the basis of procedure of asymptotic homogenization of composite materials with a periodic 
microstructure it was received the formula for effective characteristics of composite materials with 
account of the local effects. 

• With the help of a block method of multipoles distribution of energy density and components of stress 
tensor in micro cell with inclusion is simulated. The features of the current realization of algorithm of a 
block method are shown, which require its technical modification in the way of improvement of block 
system of the equations solver and more accurate normalization of joining functionals.  

• The algorithm of the solution of a problem of model parameters identification has been developed 
according to experimental researches for the general three-dimensional case. The series of the 
calculations has been made. 

• A new approach to model and investigation both the texture and the mechanical characteristics of large 
molecular systems by Monte-Carlo method has been developed. As a base of the method is an 
unorthodox algorithm allowed to make a classical Metropolis procedure for a few polymer molecules. 
Algorithm under consideration belongs to class of program which use space decomposition and has 
high grade of calibration. The structures of model mixtures of n-pentane and carbon microclusters C38 
(graphite type) as prototype of reinforced rubber composites have been investigated. It was shown the 
strong dependence the grade of associate of carbons microclusters on form of its surface. Chemical 
modification of components of mixture substantially influences on structure and mechanical properties 
of materials under study. So, aquation of carbon microclusters leads to decreasing of middle value of 
potential energy of particles. We proposed the method and investigated the mobility of polymer 
molecules close to surface of particle of filler. It was fixed the presence of layer with limited mobility 
around area of contact “polymer – graphite”. It was developed the method of evaluation of shear 
modulus for composite microcluster during the model by Monte-Carlo method. Quantum-Chemical 
Approach. 

• At given stage of work in course of modelling it was obtained that maximal shear force for polymer 
particle adsorbed on carbon surface was found approximately 3 times higher than for polymer in a 
polymeric matrix. Owing to rather weak however quite sufficient for immobilization of polymeric 



 

chain segments on the carbon surface Van-der-Waals forces, around carbon filler particles some 
condensed layer of rubber is formed with the lowered mobility of chain segments which most likely is 
responsible for strengthening of organic polymers by filling them with high dispersed carbon. 
Summarizing in should be mentioned, that in the given section the technique offered earlier is tested on 
an example of calculation of molecular friction in the complex system consisting of organic polymer 
and carbon filler. The reinforcing effect of pure nonterminated carbon fillers is the best. Some 
conclusions about impact of chemical nature of the polymer matrix on the interaction of the polymer 
segments with surface of soot fillers have been done. Aggregation of the soot particles can be 
prevented by adsorption interlayer of polymer between the soot particles. Adsorption of water in the 
interparticle interface can be considered as competitive process for polymer adsorption. For the 
formation of the contact polymer-filler water layer on the soot surface has to be removed. Hence the 
best reinforcement can be reported for the combination of isoprene-amorphous carbon and the worth 
for system polyethylene-amorphous carbon. Obtained dependencies of polymer molecule cohesion 
with carbon particle surface (or of the highest forces of microscopic friction) are in a good accordance 
with calculated geometrical and energetic characteristics. The best cohesion of isoprene chain with 
filler particle surface (the highest forces of microscopic friction) was obtained for the system isoprene-
silica. A little worth is cohesion of isoprene with carbon black or soot. Such fillers as fullerene and 
high dispersed carbon tubes represent lower forces of adhesion. As it is seen from the obtained results 
enthalpy of binding of rubber chains on a clay surface and force of microscopical friction in this 
system, which interconnected with cohesion is strongly depended on modification of clay surface by 
hydrophobic agent (organic cation). The best case can be observed if use organic cations with middle-
sized chains at about 15-20 monomer units and various modification of uncharged end providing better 
hydrophobic binding with rubber chains. 

• During the molecular-dynamic modelling it was shown, there is the discrepancy between behaviour of 
polyethylene and polyisoprene chains under their interaction with carbon fillers. The polyethylene 
chains sharply change their configuration on time and always furls into ball both in case of contact to 
carbon particles and without. Materials with polyethylene matrix practically do not keep an initial 
configuration and quickly jump in amorphous condition, aggregated around carbon particle. 
Polyisoprene chains, contrariwise, keep initial structure and injection into system of carbon filler 
deepens this tendency. Polyisoprene’s component is stabilized in presence of carbon filler. As 
structural so energetic results of molecular dynamic calculation testify about. Injection into composite 
system polyisoprene – carbon filler some water destabilizes appropriate adsorption complexes, but at 
this case the system keeps the shape of its structure pretty long. 

• To investigate the microstructure of rubber composites the method of dynamic forced microscopy and 
3D-optical interferential microscope have been used. Different sorts of technical carbons and samples 
of rubber compounds filled with active particles have been analyzed. Microstructure investigations of 
geometry of surface of particles of disperse filler and aggregations of those inside elastomeric matrix 
gave us very useful information for verification of theoretical and model evaluations of parameters of 
microclusters of composite polymeric structures. The samples of natural rubber filled with 
montmorillonite (5, 20, 40, 60% vol.) and samples of natural rubber filled with combined particles 
(technical carbon and montmorillonite) have been investigated. Rheological data which have been 
made during full-scale investigations let us to evaluate some important relaxation parameters and, first 
of all, the spectrum of relaxation time distribution. It was systematize the data about influence of 
different sorts of filler on complex of rheological and relaxation parameters, which govern to 
viscoelastic behavior above media under deformation. Such information is important for the setup of 
optimal processing technology of the composite compounds into articles. 



 

• It was accomplished the task of identification of nonlinear model for viscoelastic media on the basis of 
the nonlinear integrated Hammerstein’s operator. Is shown, that this operator with a nucleus 
synthesized on calculation of a relaxation spectrum, not always provides qualitative identification of 
model at the large deformations. The lacks of application of concept of a relaxation spectrum in models 
force us to pass to other type of models based on neural networks. The technique of synthesis of neural 
networks for the decision of a concrete mathematical task is given. The detailed block diagrams of 
neural networks for the decision of the specified kind of tasks are given. It is established, that during 
training and adaptation of neural network are frequently observed long convergence iterative 
procedures to extremal of functional. Last circumstance compels to use methods of regularization by 
training of neural models. Synthesis and analysis of neural work model to describe the behavior of 
viscoelastic media shows, that to accomplishment of required workable accuracy of neural network 
without using the feedback (small mistake of training), it is necessary to interpolate the experimental 
data in order to expand a dimension of vectors. 

• The algorithm for designation strength characteristics of heterogeneous media has been proposed. 
Justification of entered idea about stress and strain concentration tensors is shown. Consideration of 
properties of symmetry for periodicity cells allows to simplify a calculation the effective stiffness 
tensor of those. 
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1. INFLUENCE OF INCLUSIONS ON EFFECTIVE PROPERTIES OF MATERIALS 
It is well known that the presence of inclusions may lead to significant changes in effective properties of 

materials, the properties of the obtained composites determined not only by the physical properties of the phases 
(matrix and inclusions), but also by the characteristic of space distribution of particles and their shape and size. The 
last aspect became extremely important when dealing with very fine inclusions: at nano-scale. Below, the main 
results of the investigation of the influence of the above characteristic on both elastic and strength properties of 
composites are given.    

1.1. INFLUENCE OF INCLUSIONS ON EFFECTIVE ELASTIC PROPERTIES OF MATERIALS. 
TWO-PHASE MODELS 
According to the Working Plan the literature review of the problem was presented (Final Report, 2002). 
On the base of the classical Eshelby’s approach the effective solutions for determining effective properties 

of the composites formed by the elastic matrix and isolated inclusions were obtained in the closed form. The 
solutions were presented both in tensor form (Final Report, 2002), and in more convenient, although less physical 
matrix form (Final Report, 2003. 

A number of important particular cases, for which asymptotical representations are possible, were pointed 
out: flat inclusions (nano-plates), and needle-like inclusions (nano-tubes). The combined influence of the shape and 
relative stiffness of inclusions was investigated; it was shown that the presence of two parameters (the ratio of 
maximal an minimal dimensions of the inclusion and relative stiffness of inclusions) leads to non-uniform limit 
transition, which restricts the area of applicability of known classical asymptotical formulae. The areas of 
applicability of asymptotical formulae were obtained (appears to be for the first time).   

The influence of anisotropy of the inclusions to the effective composite properties was investigated (Final 
Report, 2003). It was shown that the main influence is due to some particular combinations of elastic parameters of 
inclusions, and these combinations were pointed out. 

The influence of the orientation of inclusions in space were investigated both for isotropic and anisotropic 
inclusions (Final Report, 2003). For the composites on the base of nano-tubes three types of space distribution were 
considered: random, aligned and transverse (all inclusions lay in parallel planes). The solution for last case appears 
to be obtained for the first time.   

Originally, all the solutions were obtained for the small concentration of inclusions. The influence of 
concentration were then accounted for with the help of differential self-consistent method and the method of 
effective field (Mori-Tanaka). The former appears to be more strict and physically justified, however it leads to 
necessity to solve systems of differential equations. Besides, now it is inapplicable for solving the problems of 
anisotropic distribution of inclusions, because expressions of Eshelby’s tensor for anisotropic media in closed form 
are not obtained yet. Mori-Tanaka’s method, although, may be, resulting to some (not significant) systematical 
error, is more simple and allows obtaining generalizations for anisotropic distribution of the (anisotropic) 
inclusions in space.       

The obtained results were compared with the results known from the literature. 
The above results were presented in the previous reports (Final Report, 2002; Final Report, 2003). 
The obtained results appear to be important as it are, as well as an useful tool for constructing more 

advanced models such as three-phases models, accounting for the presence of an intermediate layer between the 
matrix and inclusions.  

1.2. INFLUENCE OF THE INTERMEDIATE PHASE TO THE EFFECTIVE ELASTIC PROPERTIES 
OF THE COMPOSITE 

1.2.1. General 
Generally, during polymerization process in addition to matrix and inclusions the third, Intermediate, phase 

appears in the form of thin or thick shells surrounding nano-particles. If such a situation takes place, the influence 
of this Intermediate phase to the effective properties of the composite has to be taken into accounts. The presence 
of such a phase is indicated by the following facts: 
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- abnormal increase of elastic modulii of nano-composites; 
- dependence of the effective elastic properties of sizes of inclusions; 
- increase in strength of the composite with the decrease of the inclusions sizes. 
Indeed, the changes in the composite properties with the decrease of the inclusions sizes, which are not 

predicted by the classical theories, may be explained by the existence of the intermediate phase at the matrix-
inclusions contacts. Since the contact area grows with the decrease of the inclusions sizes, the influence of the size 
became reasonable.  

In the frame of the current research plan we continued our study on the modeling of the influence of the 
intermediate phase to the effective moduli of the composite. Earlier (Final Report, 2003; Intermediate Report, 
2004) a method of estimation of the intermediate phase properties is suggested, and the example of estimation of 
the properties of intermediate layer is given. 

The following problems may be formulated. First, knowing mechanical and geometrical properties of all 
phases to calculate the effective properties of the composite (the direct problem). Second, knowing elastic 
properties of the matrix and the composite, to estimate the properties of the Intermediate phase and/or the 
inclusions (inverse problem). 

Two alternative approaches may be suggested to address the problem. The first one consists in solving the 
complete three phase problem and calculating the effective moduli in question. However, this way, although being 
rigorous, leads to enormous computational difficulties (e.g. Riccardi and Montheillet, 1999). Moreover, the method 
used in the cited above paper is restricted by the case of co-focal spheroids bounding the inclusion and the third 
phase. In reality, the shapes of the phase boundaries are more complex (see below). Rigorous calculations for this 
case are thought to be much more complicated. 

An alternative simplified model were suggested consisting in separating the problem into two sub-
problems and solving each of them consecutively. First, to consider the original nano-inclusion and the 
surrounding layer of the third phase and to calculate the effective properties of such a uniform equivalent inclusion. 
Second, to calculate the effective properties of the composite consisting of the matrix and embedded inclusions of 
such an equivalent material. This approach, although being just an approximation, leads to essential simplification 
of the problem and allows relatively simple analytical estimations. It is believed that the errors involved due to such 
a simplification are in agreement with the accuracy of the experimental data. 

The idea of the suggested approach was outlined previously  (Final Report, 2003). Below, more detailed 
description is given accounting for such effects as anisotropy of nanoparticles and influence of the relative 
thickness of the intermediate layer. An example of the inversed problem is considered: knowing properties of 
matrix and inclusions to find properties of the intermediate layer. 

1.2.2. Real object and proposed model; statements of direct problems 
Let us consider a composite consisting of a matrix and nano-partiles embedded to it, each nano-tube being 

surrounded by the material of the intermediate phase that appeared during polymerization process and possesses 
properties different from the properties of the matrix, as it is shown in Figure 1.1. Generally, the properties of the 
third phase may be non-uniform and the surface bounding it from the matrix may be rather uncertain. However it is 
naturally to suppose that the thickness of the layer formed by the intermediate phase is approximately constant. 
Therefore the boundary between the matrix and the intermediate phase may be considered as being close to the 
surface surrounding the nano-particle equidistantly. If the regions of the intermediate phase occupy quite large 
relative volume, then these regions may overlap as it is shown in the Figure 1.1.  

In order to simplify further considerations, the real structure of the intermediate phase, which is unknown, 
but supposed to be close to the described ones, is modeled by possessing rather uniform elastic properties and being 
bounded from the matrix by rather regular distinguishable surface (Figure 1.2). 

Let us introduce the following notation  
V1, V2, V3  are the volumes occupied by the nano-particles, intermediate phase and matrix, 

respectively;  
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Λijkl
1 Λijkl

2, Λijkl
3, – are tensors of elastic moduli of nano-particles, intermediate phase and matrix, 

respectively;  
k1, E1, μ1, λ1, ν1 –  are compressive, Young’s and shier moduli, lame constant and Poisson’s ratio of nano-

particles, respectively (in case of isotropy);  
k2, E2, μ2, λ2, ν2   –  are compressive, Young’s and shier moduli, lame constant and Poisson’s ratio of the 

intermadiate phase, respectively (in case of isotropy);   
k3, E3, μ3, λ3, ν3   – are compressive, Young’s and shier moduli, lame constant and Poisson’s ratio of the 

matrix, respectively (in case of isotropy); 
Λijkl

12 – is tensor of equivalent elastic moduli of the particle formed by nanoinclusion and the 
intermediate layer;  

Λijkl
13 – is tensor of equivalent elastic moduli of the composite;  

k12, E12, μ12, λ12, ν12   –  are equivalent compressive, Young’s and shier moduli, lame constant and Poisson’s 
ratio of the particle formed by nanoinclusion and the intermediate layer (in case of 
isotropy);  

k13, E13, μ13 , λ12 , ν13 – are equivalent compressive, Young’s and shier moduli, lame constant and Poisson’s 
ratio of the composite (in case of isotropy); 

Ω  – is the volume concentrations of the nano-particles within the composite.  
The last quantity is defined, obviously, as 

321

1

VVV
V

++
=Ω                    (1.1) 

For further calculation we will need some additional quantities: relative concentration of the nano-particles 
within the third phase, which is 

21

1
12 VV

V
+

=Ω                     (1.2) 

and relative concentration of the nano-particles and third phase within the matrix, which is 
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The obvious relation for the introduced quantities follows directly from definitions (1.1) – (1.3)  
2312ΩΩ=Ω                                 (1.4) 

Following the outlined procedure, let us consider the original inclusion and the surrounding layer of the 
third phase and calculate the effective properties of such a uniform equivalent inclusion. In general case the 
problem may be solved for an arbitrary concentration Ω12 and shapes of the regions occupied by the third phase at 
least numerically.  

Then consider a medium, constituted by the matrix and equivalent particles, which properties are supposed 
to be equal to the properties calculated at the previous stage. 

1.2.3. The first stage 
Let us apply the following approach, being the more rigorous the less is the relative concentration Ω12. 

Namely, consider the two phases media consisting of nano-particles scattered within the matrix of the third 
phase with concentration Ω12, and calculate the effective moduli of such a media, assuming these moduli to be the 
moduli of the equivalent inclusion.    

Two particular extreme cases may be distinguished: the thick and thin intermediate layer (Figure 1.2). 

1.2.3.1. Thick intermediate layer; general 
For the case of relatively thick intermediate layer the volume occupied by it is much larger then the volume 

of the nanoparticle. Therefore, the condition of small concentration is satisfied  

1
21

1
12 <<

+
≡Ω

VV
V

                    (1.5) 
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and the applied method is justified. Tensor of elastic moduli, in that case is determined by the following expression 
(Final Report, 2003): 

( )( 12

11
2

1
21212 ΩΛ+Λ−Λ+Λ=Λ

−−− S )

]

                 (1.6) 
The matrix form is adopted hereafter for all tensor quantities. Here S is Eshelby’s matrix, composed by the 

elements of Eshelby’s tensor. The particular expressions for its components for the particles under consideration 
are given in previous reports (Final Report, 2003; Final Report, 2003).  

Assuming the nanoparticles and equivalent particles to be isotropic, the following simple formulae are 
obtained  (Final Report, 2003)< which are valid for small relative concentration Ω12: 

[ ]12212 1 Ω+= Akk                                (1.7) 
[ 12212 1 Ω+= Bμμ           

1.2.3.2. Thick intermediate layer; isotropic model 
Assuming the nanoparticles and equivalent particles to be isotropic, the following simple formulae are 

obtained  (Final Report, 2003) for the parameters A and B, determined by elastic moduli of matrix and inclusions 
and the shape of the inclusions: 

For nanotubes, represented as prolated spheroids they are 
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For nanoplates, represented as oblated spheroids they are 
 

( )( )
( )

( ) ( ) ( )[ ]
( )112

111221

112

1221

13
2121

43
43

ν
νν

μ
μ

−
−++−

=
+

+−
=

kk
kkkk

kk
kkkA      

( )( )
( )

( ) ( ) ( )[ ]
( )121

121121

**0*
2121

2
11121

15
54257

435
12689

νμμ
νμνμμμ

μμμ
μμμμμμμ

−
−+−−

=

=
+

+++−
=

k
kkB

            (1.9) 

1.2.3.3. Thick intermediate layer; anisotropic model 
However, representation of the equivalent inclusions as anisotropic appeared to be more realistic, sinse, 

even neglecting anisotropy of the nanoparticles itself, their distribution within the intermediate phase (position of 
the single inclusion) is ordered.   

For strongly prolonged inclusions, such as nanotubes, by making limit transition to infinitesimally thin 
spheroids in the formulas for components of Eshelby’s tensor (written in Final report, 2003, formulae (1.10)-
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(1.11)), and then substituting the result into (1.6) we obtain an asypmtotic representation for the effective elastic 
moduli of a composite enforced with aligned prolonged inclusions 

12

1211

44

44

331313

131112

131211

2

2

2

2222

2222

2222

12

2
00

00
00

000
000
000

000
000
000

00
00
00

000
000
000

000
000
000

2
2

2

Ω

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

+

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+

+

=Λ

DD
D

D
DDD
DDD
DDD

μ
μ

μ
μλλλ

λμλλ
λλμλ

    (1.10) 
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Here moduli is related to the Cartesian coordinate frame with x3 axis directed along the axis of rotation of 
the nanotube. 

This result, obtained here as a particular case coinsides with the result by Walpole (1969). It has to be 
noted, that as it was mentioned in the previous reports (Final Report 2002; Final Report 2003), such asymptotics 
stop working for extremely rigid inclusions, for which condition 

a
bij <<

Λ

2
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μ
;  1>>

a
b

.                  (1.12)  

are not satisfied. Here 
a
b

 is the ratio of semi-axes of the spheroid. 

In case of relatively rigid inclusions, however condition (1.12) is not violated, in the frame of the 
considered case the following particular case may be distinguished, namely 
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For this case the result may be obtained by the limit transition ( ) 02
1

21 →ΛΛ−Λ −  in (1.11). ). In case of 
the aligned inclusions the result is 
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where E33 is the elastic modulus along the inclusions 
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Thus, if condition (1.13) is satisfied, the effective elastic properties essentially depend on elastic modulus 
along the inclusions only.  

In case of oblate spheroids, by making limit transition to infinitesimally thin spheroids in the formulas for 
components of Eshelby’s tensor (written in Final report, 2003, formulae (1.10)-(1.11)), and then substituting the 
result into (1.6) we obtain an asypmtotic representation for the effective elastic moduli of a composite enforced 
with aligned nano-plates. Similar to the case of nano-tubes, the result is still given by (1.10), where 
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Here moduli is related to the Cartesian coordinate frame with x3 axis directed normally to the the plane of 
the nano-plate. 

This result, obtained here as a particular case coinsides with the result by Walpole (1969). It has to be 
noted, that as it was mentioned in the Final report (2002, 2003), such asymptotics stop working for extremely rigid 
inclusions, for which condition 
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where 
b
a

 is the ratio of semi-axes of the spheroid representing the nano-plate. 

In case of relatively rigid inclusions, however condition (1.17) is not violated, in the frame of the 
considered case the following particular case may be distinguished, namely 
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For this case the result may be obtained by the limit transition ( ) 02
1

21 →ΛΛ−Λ −  in (1.16). In case of 
the aligned inclusions the result is 
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Note, that if the condition of small relative concentration (1.5) is satisfied, according to the described 
technique, the effective moduli of the equivalent inclusions are determined solely by the relative concentration of 
the nano-particles within the material of the third phase Ω12, effective moduli of nano-inclusions and the third 
phase and geometry of nano-particles, and do not depend on the particular shape of regions occupied by the third 
phase. That seems reasonable, taking into account the assumption. 

1.2.3.4. Thin intermediate layer; anisotropic model 
In case of a thin intermediate layer, representation of the effective particle formed by nono-inclusion and 

the intermediate layer as an isotropic particle seems too inaccurate. Besides, the shapes of these particles are not 
close to spherical any longer; the shape of the effective particles rather reflect the shape of the original nano-
inclusions (oblate, or prolate spheroids). 

In case of violating condition (1.5), one of approximate schemes of calculating effective characteristics 
should be applied. The most attractive for the case in question appears to be considering the periodical structures. 
However, for the sake of simplicity, Mori-Tanaka’s approach may be applied. According to this approach, (1.6) 
have to be replaced with the following expression (Final report, 2003) 

( ) ( )( ) 12

11
212

1
21212 1 ΩΛΩ−+Λ−Λ+Λ=Λ

−−− S               (1.20) 
Here the components of Eshelby’s tensor, S, have to be chosen corresponding either prolate, or oblate 

spheroids for nano-tubes and nano-plates, respectively.  
It is also use the differential scheme. This approach seems preferable if the analytical solution is known for 

the case under consideration.  
Thus, the first part of the problem is solved. 

1.2.4. The second stage 
Let us consider now the second part of the problem: namely, to determine the effective properties of the 

composite consisting of the matrix and embedded inclusions of the equivalent material with the above calculated 
properties. We restrict ourselves with considering isotropic in space distribution of particles only. 
 To address this problem we again may use Eshelby’s method of determining effective characteristics of the 
composite with ellips port 2003). Similar to (1.6), (1.20) we may write
               (1.21) 

oidal inclusions (Final Report, 2002; Final Re
)

( ) ( )( ) 23

11
323

1
1212313 1 ΩΛΩ−+Λ−Λ+Λ=Λ

−−− S

( )( 23

11
3

1
1212313 ΩΛ+Λ−Λ+Λ=Λ

−−− S
for small relative concentrations Ω , or  23

             (1.22) 
for final concentrations. 
 In case of isotropic distribution of the inclusions (even anisotropic) in the isotropic matrix, the composite 
remains.  In case of small relative concentration, Ω23 we have: 

[ ]23
*

313 1 Ω+= Akk                   (1.23) 

[ ]23
*

313 1 Ω+= Bμμ           
Here A* and B* are some constants, determined by modulus of the matrix and inclusions, as well as by the shape of 
the inclusions. 
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1.2.4.1. Thick intermediate layer 
 Keeping in mind that the thickness of the layer of the third phase between the nano-tube and the matrix is 
approximately constant, we may conclude that increase of the relative concentration Ω12 leads to the configuration, 
for which the shape of zone occupied by the intermediate phase approach to the shape of the nanoparticle (flat, or 
needle-like spheroid); and the decrease of Ω12 leads to approaching this zone a sphere. It is this considerations that 
has determined the choice of the cases considered in figure 1.2. 
 Therefore, for small relative concentrations Ω12 the constants A* and B* may be chosen corresponding to 
the spherical inclusions (Figure 1.2). Corresponding expressions for isotropic inclusions have the form (Roscoe, 
1973, Finale Report 2002; Finale Report 2003) 

( )(
(
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For anisotropic inclusions substituting components of Eshelby’s tensor for spherical inclusions and the values 
of effective elastic constants, calculated on previous stage into (1.21) or (1.22) yields the effective elastic properties of 
composite. In case of isotropic distribution, they may be found with the help of methods of (Kroner, 1958; Finale 
Report 2002; Finale Report 2003). In this case the constants in equations (1.23) are determined as follows 
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Applicability of formulae (1.24) and (1.25) is restricted with the small relative concentrations. 

1
321

21
23 <<
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+

≡Ω
VVV

VV
               (1.26) 

Simultaneous satisfying both conditions (1.5) and (1.26) seems unlikely. For higher concentration of the 
equivalent inclusions within the matrix the differential scheme of calculating the effective characteristic may be applied 
(Roscoe, 1973; Salganik, 1973; see also Ustinov, 2002, 2003; Final Report 2003). Therefore, according to this scheme, 
condition (1.26) may be withdrawn, and as the retribution, linear algebraic equations (1.23) have to be replaced with the 
differential ones. For the case in question these equations are (Roscoe, 1973; Final Report, 2002; Final Report, 2003) 
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            (1.27) 

Here moduli k13, μ13 are considered as functions of concentration Ω23. The obvious initial conditions 
 

3013
23

kk =
=Ω

           

3013
23

μμ =
=Ω

                   (1.28) 

have to be satisfied for the system (1.27). 
If it is not necessary to obtain more accurate solution, the differential scheme may be replaced with the 

scheme of Mori-Tanaka, considered above.  
As was mentioned previously (Final Report, 2003), if the relative volume occupied by the intermediate 

phase become close to unity, regions occupied by the third phase may overlap. When the number of such 
overlapped regions reaches some critical value, the effect of percolation would take place. This means that the 
results obtained may loose their accuracy and an alternative model has to be applied. In the limiting case, where 
“the intermediate layer” occupy all the space and there is no original matrix remained, there is no need to consider 
the second stage. 

1.2.4.2. Thin intermediate layer 
In case of thin intermediate layer (high relative concentrations Ω12) for real composites with small 

concentration Ω, owing to (1.4) Ω23 is also small. Therefore, this case may be considered in the frame of small 
concentration approach.  
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In case of isotropic distribution of nano-tubes surrounded by thin intermediate layer, considering the 
nanotube and surrounding them layers of the third phase as isotropic particles, we may use formulae (1.7), (1.8), 
formally replacing indexes 2 to 3, and 1 to 12. In case of nano-plates, using the same approach, we may use 
formulae (1.7), (1.9) with the same formal replacement.  

According to a more rigorous approach, the nanotubes surrounded by thin intermediate layer should be 
considered as anisotropic particles. Therefore, instead of (1.8) the following formulae obtained on the base of 
method of invariants (Final Report, 2003) have to be used 

( 12
13

12
12

12
33

12
11 422

9
1 DDDDA +++= )          

( )12
13

12
12

12
44

12
33

12
11 451227

30
1 DDDDDB −−++=                         (1.29) 

where D12
ij are determined: 

- for nano-tubes, by formulae (1.11) with formal replacing indexes 2 to 3, and 1 to 12; 
- for nano-plates, by formulae (1.16) with the same formal replacing. 

 
 Thus, the second stage of the problem is completed. 

1.2.5. Inverse problem; an example 
Here, the algorithm is applied for calculating effective modulus of composite reinforced by nanoplates. 
While solving the direct problem is straightforward, and its solution is stable, the solution of the inversed 

problem may cause some difficulties due to instability and possible absence of the exact outcome within the 
reasonable range of parameters. Therefore the procedure is suggested, consisting in consider the influence of the 
parameters of the third phase to the Young’s modulus of composite only. 

Consider an example, rather typical for nanocomposites: matrix is field with 0.5% volumetric 
concentration of nanoplates, which Young’s modulus is 200 times higher then the modulus of the matrix; Poisson’s 
ratio of the matrix and nanoplates being 0.45 and 0.33 respectively; the increase of composite modulus comparing 
to the matrix modulus being 70%. If there would be no intermediate layer the theory predicts the increase of 50%. 
To explain the additional increase we suppose that the additional intermediate layer has appeared while casting.  

Let us seek for the solution assuming the intermediate layer to be thin.  
For the first stage (the problem of a thin plate embedded in a material of the intermediate phase) the 

analytical solution for the differential scheme is known (Final Report, 2003), therefore it is natural to make use of it. 
 

( )( ) ( )( )
( )

( ) ( )
( ) ( ) ( )[ ]

( ) ( )
( ) ( ) ( ) ( ) (( )[ ])1221121

2
121211

122
22

1

2
121122112211

122
2

1

1211

121111

12

115711557
11150

2121416
113

12
1513159131

ννννν
ν

ννν
ν

ν
νννν

+−+Ω−+−Ω−
Ω−−

−
Ω−−−+Ω−

Ω−−

−
Ω−

Ω−+−+−
=

EEEE
E

EEEEE
E

EE

           (1.30) 

The expression for the effective modulus of the composite may be obtained by formal replacement E1, ν1, 
E2, ν2, Ω12 with E12, ν12, E3, ν3, Ω23.  

The solution in question is obtained by resolving equation (1.30) and the one obtained by the above 
mentioned formal replacement with respect to Young’s modulus of the intermediate phase E2 and relative 
concentration Ω12.  

The possible combination of its thickness (directly related to the relative concentration of the nanoplates 
within the volume of the layers) and Young’s modulus, which is able to explain the additional increase, is shown in 
the Figure 1.3. Concentration Ω12=0.1 corresponds to the thickness of the layer about 4.5 times higher then the 
thickness of nanoplates; concentration Ω12=0.6 corresponds to the thickness of the layer about 3 times lower then 
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the thickness of nanoplates. It is seen that such a parameter as Poisson’s ratio of the intermediate layer has a minor 
effect on the results. 

1.2.6. Summary 
During the three years period and according to the Working Plan the following works have been done and 

the following main results achieved: 
- The literature review of the problem has been performed. 
- On the base of the classical Eshelby’s approach the effective solutions for determining effective 

properties of the composites formed by the elastic matrix and isolated inclusions have been obtained in 
the closed form. The solutions have been presented both in tensor and matrix forms. 

- A number of important particular cases, for which asymptotical representations are possible, have been 
pointed out: flat inclusions (nano-plates), and needle-like inclusions (nano-tubes). The combined 
influence of the shape and relative stiffness of inclusions has been investigated; it has been shown that 
the presence of two parameters (the ratio of maximal an minimal dimensions of the inclusion and 
relative stiffness of inclusions) leads to non-uniform limit transition, which restricts the area of 
applicability of known classical asymptotical formulae. The areas of applicability of asymptotical 
formulae have been obtained (appears to be for the first time). 

- The influence of anisotropy of the inclusions to the effective composite properties has been 
investigated (Final Report, 2003). It has been shown that the main influence is due to some particular 
combinations of elastic parameters of inclusions, and these combinations have been pointed out. 

- The influence of the orientation of inclusions in space have been investigated both for isotropic and 
anisotropic inclusions. For the composites on the base of nano-tubes three types of space distribution 
have been considered: random, aligned and transverse (all inclusions lay in parallel planes). The 
solution for last case appears to be obtained for the first time. 

- The nonlinear influence of concentration has been accounted for with the help of differential self-
consistent method and the method of effective field (Mori-Tanaka).  

- The obtained results were compared with the results known from the literature. The obtained results 
appear to be important as it are, as well as an useful tool for constructing more advanced models such 
as three-phases models, accounting for the presence of an intermediate layer between the matrix and 
inclusions. 

- An algorithm for approximate calculating the effective characteristics of three phase composite 
material formed by the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions 
of the third phase is suggested.  

- For the three-phase composite the following problems have been formulated. First, knowing 
mechanical and geometrical properties of all phases to calculate the effective properties of the 
composite (the direct problem). Second, knowing elastic properties of the matrix and the composite, to 
estimate the properties of the Intermediate phase and/or the inclusions (inverse problem). 

- Variants of solutions of both direct and inverse problems have been suggested. 
- Examples of solving both direct and inverse problems have been presented. 

The above results were presented in the current and previous reports (Final Report, 2002; Final Report, 2003). 
During the last year and according to the Working Plan the following works have been done and the 

following main results achieved: 
- The algorithm for calculating the effective characteristics of three phase composite material formed by 

the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions of the third phase is 
developed. Variants of both direct and inverse problems are considered for both thick and thin 
intermediate layer. 

- In the frame of the approach the effects caused by anisotropy are accounted. 
- An example of solving inverse problem has been presented: estimation of the properties of intermediate layer.   
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Suggestions on prolongation of the works on the theme. 
It is suggested to continue the study of the mechanical properties of nanocomposite in the following directions: 
1. To continue studying the influence of the intermediate phase to the effective properties of the composite. 

Such a phase may appear during polymerization process in the form of thin or thick shells surrounding 
nano-particles. The study was commenced during the project and a method of estimation the influence of 
the intermediate phase properties was suggested, based on consequent consideration of contribution of the 
inclusions and intermediate phase into the effective properties. It is suggested to develop this approach to 
account for anisotropy effects and various types of space distribution.   

2. To study the influence of the area of contact between the matrix and inclusions. Researches on this and 
previous point may help to understand such processes as intercolation  and exfoliation and their influences 
to the effective mechanical properties of the composite. 

3. To study the influence of the matrix anisotropy and to obtain a solution for effective elastic properties of 
composite with anisotropic matrix (at least for some important particular cases of anisotropy). For the last 
years, a lot of attention has been devoted to the problem of influence of inclusions of various shapes to the 
effective properties of composites with isotropic matrices. At the same time much less attention has been 
given to consideration the anisotropic matrices. This is mainly due to the fact that the latter case need much 
more complicated calculations involved, such that the general analytical solution for this case in the closed 
form is still unknown. Meanwhile, to obtain such a such a solution, at least for some important particular 
cases of matrix anisotropy, would be of great interest due to: 

- such a solution is of importance itself; 
- for calculating effective elastic properties of composite even on the base of isotropic matrix such 

methods as self consistent method and differential self consistent method involve solutions for an 
inclusion in the anisotropic matrix.   

 

1.3. ESTIMATES OF NANOCOMPOSITES SHEAR STRENGTH 

According to the working plan we continued studies modeling of the nanotube-polymer matrix adhesion. 
The statement of the problem and all equations were presented in the preceding reports in details. 

In this final report the analysis of the computation results, obtained according to the model proposed in the 
preceding reports is presented. 

The main relations essential for understanding the computation results are briefly outlined below. 
Let's define the average shear stress aτ  along of a nanotube part of the length cL  as follows 

0

1 ( )
cL

a i
c

x dx
L

τ τ= ∫        (1.31) 

For a case when the shear stresses ( )i xτ  in the all range of the external loading are linearly depend on the 
axis displacements  u

1

1
i

G u
H

τ =                (1.32) 

and at the nanotube sections 0x =  and cx L=  (see Fig. 1.4) are adopted the following boundary conditions 

1 1

0

( ) , (0) 0
c

c f f f
x L x

u uL E E
x x

σ σ σ
= =

∂ ∂
= = =

∂ ∂
=           (1.33) 

we can obtain the dependence of the shear stresses over the nanotube axis: 
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The following notations are used in the formulas (1.31)-(1.34):  
 H is the interface layer thickness (see Fig. 1.4); 

1G  is the shear modulus of the interface layer on the elastic branch of the deformation law (see Fig. 1.5); 

fE  is the elastic modulus of the fiber; 

fσ  is the external normal stress applied at the end of the nanofiber; 

1μ  is the relative stiffness of the interface layer between nanotubes and polymer matrix; 

c

xt L= is dimensionless distance along of the nanotube axis; 

,D d  are outer and inner nanotube diameters, respectively (see Fig. 1.4). 
The following parameters were also introduced above (and similar will be used later): 

1,21,2
1,2 1,2 1,2 1,2 2 2

2
, , ,c

f

G D DL
E H D D d

δ μ
μ β λ β δ= = = =

−
 (1.35) 

By using formula (1.34) and notations (1.35) we can write 
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∫  (1.36) 

Let's note, that the average value of the shear stresses (1.36) coincides with the value of the shear stress for 
an ideally-plastic matrix (Kelly and Tyson,1965; Wagner, 2002).  

The dimensionless shear stresses (the shear stress concentration factor, SCCF) can be defined as follow 

( ) i
R

a

t ττ
τ

=  (1.37) 

By incorporating Eqs (1.34) and (1.36) we obtain for the linear deformation law (1.32) 
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Within the framework of the current model the maximal value of the shear stresses is observed on loaded 
end of the nanotube ( cx L= ). 

For displacements given at the nanotube end ( cx L= ) 

1( )c fu L u=  (1.39) 

where fu  is the nanotube limit stretching, the dependency of the shear stress over nanotube length is 

( )
( )
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τ

λ
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In this case the average shear stress Aτ  is defined as 
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and SCCF coincides with (1.38) 
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Let’s evaluate the physical-mechanical parameters in (1.31)-(1.42). According to the data presented in 
(Wagner, 2002) the wall thickness ( ) of single-wall nanotubes is  and the external 

diameter 

0.5( )h D= − d m0.34h n=
D  is about 2 5 . Supposing that nm− 5D nm=  then the internal diameter is  and 4.32d n= m

2 2
1.986D

D d
δ = ≈

−
 (1.43) 

According to (Wagner, 2002) the critical length of a nanofiber is about 100 500cL nm≈ −  and the 

critical external stress fσ  vary between 20 and 150 . The elastic modulus of the nanotubes is in the range GPa
0.8 1,8fE TPa= −  (Wagner, 2002; Lau, 2003). 

Information regarding other parameters of the model is rather undetermined. The thickness of the interface layer 
H  strongly depends on the types of adhesion. There are several methods to improve interaction between nanotubes and 
polymeric matrix. For example, chemical attachment or cross linking of nanotube walls and polymeric matrix 
(functionalization) has been proposed as one of the techniques to improve the interfacial bonding. Based on molecular 
dynamics simulation it was shown (Wong, 2003; Frankland and Harik,2003; Frankland et al, 2002) that the shear 
strength of nanotubes-matrix interface and the critical length for load transfer are essentially improved by chemical 
cross-linking the nanotubes and matrix. The length of a functionalization group is about (Wong, 2003). 
Therefore, the lower bound of the thickness of the interface layer is 

0.1 0.2nm−
( )0.04 0.1H D= −  and the upper reasonable 

bound of this parameter is not more then the nanotube diameter DH ≈ . Let’s proceed to the determination other 
parameters of the deformation law (Fig. 1.5). The equations of the deformation law for the cases of the elastic 
deformation and hardening along the nanotube axis can be written as follow 
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 (1.44) 

where 
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κ κ τ κ= = = − )2κ
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 (1.45) 

We can evaluate the bounds for the shear modulus  supposing that the distance between the functionalize 
attached groups is not more then the nanotube diameter as in the numerical simulation (Wong, 2003; Frankland and 
Harik,2003; Frankland et al, 2002) and the thickness of the functionalize group is less then the nanotube wall 
thickness . In this case the upper bound for the elastic modulus of the interface layer is 

1G

0.34h n=

1 f
hE E

D h
<

+
 (1.46) 

If Poisson's ratio for the interface layer equals 0.25ν =  and 2 5D nm= −  we obtain 
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hG 05.0
)1()(
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++
<  (1.47) 

The elastic modulus of the polymer matrix is about 2 3.5mE GPa= ÷ , therefore the bounds for the 
shear modulus of the interface layer are 
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where the parameter 1ψ <  is determined by the equality of the adhesion without the functionalization and  is 
the shear modulus of the matrix. 

mG

We also can choose the parameter ( ) of the hardening part of the deformation law supposing that 2G
2 10 G G≤ ≤  (1.49) 

The case  corresponds to the ideal plastic flow. Note, that for this case the formulas (1.38)-(1.43) 
need to be modified. 

2 0G =

Finally, we will use the following parameters for the computation: 
the nanotube external diameter - 5D nm= ; 
the nanotube internal diameter - d = 4.32 ; nm
the wall thickness of single-wall nanotube - h = 0.34 ; nm
the critical length of the nanofiber - Lc = 100 ; nm
the elastic modulus of the nanotubes - 1fE TPa= ; 
the Poisson ratio - 0.25ν = ; 
the critical external stress - 50f GPaσ =  (Wong, 2003; Frankland and Harik,2003; Frankland et al, 2002); 
the thickness of the intermediate layer - H D= . 
The values of the parameter ε  in (1.48) are chosen as 0.0005, 0.00025, 0.000125ε =  and the shear 

modulus of the interface layer is calculated according to 

1 2(1 )
fE

G
ε

ν
=

+
 (1.50) 

The values of the relative stiffness of the interface layer for the given values of , , fD H E  and ε  are 

determined as follows 
4 41

1 2.0 10 ;1.0 10 ;0.5 10
f

G D
E H

μ − −= = ⋅ ⋅ ⋅ 4− (1.51) 

The average shear stress for deformation law (1.32) and given above values of parameters , , ,f cL D dσ equals: 

158,44a MPaτ ≈  

The dependencies of the shear stress over the nanotube length for different values of the layer relative 
stiffness, see (1.51) are given in Fig. 1.6. Note, that the results in Fig. 1.6 are close to the experimental results 
(Wong, 2003; Frankland and Harik,2003; Frankland et al, 2002) where the shear stresses for nanotube based 
composites were investigated: 138 MPa (epoxy matrix) and 186 MPa  for polystyrene matrix. 

One can also see in Fig. 1.6 that when the relative stiffness of the interface layer is decreasing then the 
distribution of the shear stresses tends toward the uniform state.  

For a small parameter 1μ  we can write 

1
2 1

1 ≈=
D

Lc μδ
λ  

and therefore from (1.34) и (1.38) we obtain 

2

2( ) 1 , 1
4

i
i f R

c a

D dt
L D

ττ σ τ
τ

⎡ ⎤⎛ ⎞
→ − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
→  (1.52) 

which is close to ideally-plastic case (Kelly and Tyson,1965; Wagner, 2002). 
The distributions of the dimensionless shear stress (SCCF) along the nanotube axis for the values of 

relative stiffness 1μ  from (1.51) and for relative stiffness 1 10α 1μ μ=  are shown in Fig. 1.7-1.8. It is seen that 
when the relative stiffness of the interface layer is increasing by 10 times then the distribution of the shear stresses 

 15



tend toward more non-uniform state. For example, if 4
1 0.5 10μ −= ⋅ (see Fig. 1.7) then (1) / (0) 1.085R Rτ τ ≈  and 

for 3
1 2 10 40α 1μ μ−= ⋅ =  (see Fig. 1.8) we obtain (1) / (0) 17.75R Rτ τ ≈ . It should be noted, that if the stiffness of 

polymer matrix is decreasing then the shear stresses tend to uniform state. 
The dependencies of the shear stresses at the breaking point ( 0)x =  versus the relative length of the 

broken part of nanotube are given in Fig. 1.9. It is seen that if the relative length of the broken part is increasing 
then the shear stress is decreasing. It is easy to show from (1.4) that if 1μ → ∞  then ( )0 0iτ → . 

The shear stresses at the loading zone ( cx L= ) are also decreasing if the relative length of the broken part 
of nanotube increases (see Fig. 1.10) and 

1(1) ,
2

f c
i

L
D

σ
τ μ

δ
= → ∞

)

 (1.53) 

The dependencies of the dimensionless shear stress (SCCF) at the breaking point ( 0x =  and at the 
loading edge (

cx L= ) versus the relative length of the broken part of the nanotube are given in Fig. 1.11-1.12. If the 
relative length of the broken part is increased then the parameter (1) / (0)R Rτ τ  also increases. 

It’s interesting to note, that the average value of the dimensionless shear stress (SCCF) along the nanotube 
axis is not depend on the relative stiffness 

( )
( )

1
1

1
10

cosh
1

sinhR

t
dt

λ
τ λ

λ
= ∫ =  (1.54) 

Let’s consider the displacement fu  given at the nanotube end ( cx L= ) as the boundary condition 

1( )c fu L u=  (1.55) 

The normal critical stress at the ( cx L= ) for the boundary conditions (1.55) can be written as follows 

1

2
( ) tanh 2f fc

f

u EL
D D D1

cLδ
σ μ δ⎛= ⎜

⎝ ⎠
μ ⎞

⎟  (1.56) 

The dependencies of the normal critical stress (1.56) on the relative length of the broken part of nanotube 

are given in Figs 1.13-1.14 ( )2fu nm= . If cL
D

→ ∞  then the normal critical stress is tends to 

min
1

2 f f
f

u E
D

δ
σ μ=  (1.57) 

To continue the solution of the problem let us consider the bilinear interface law with elastic and hardening 
parts (Fig. 1.5). To obtain the distribution of the shear stresses over the nanotube length one needs to consider the 
inverse problem. For deformation law (1.44), boundary conditions (1.33) and the additional conditions of 
continuity and compatibility at the point mx  of the deformation law changing 

1 2
1 2( ) ( ),

m m

m m m
x x x

u uu u x u x
x x x= =

∂ ∂
= = =

∂ ∂
 (1.58) 

and the shear stresses can be written as follow 

( )

( )
( )

( ) ( )

( )

1
1

1

2 2
2

2
2

cosh
, 0

cosh

cosh 1 sinh
, 1

cosh 1

m
m

m

fi
m

fm
m

m

tuG t
H

t
t t

EuG t
H

λ
ρ

λ ρ
ξστ

η λ λ ρ
λ

ρ
λ ρ

⎧
≤ ≤⎪

⎪⎪= ⎨ − + −⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎪
⎪ < ≤

−⎡ ⎤⎪ ⎣ ⎦⎩

 (1.59) 

where  are displacements of the nanotube axis on the parts with different stress-displacement law, 

 is the critical axis displacements (Fig. 1.4), 
1 2( ), ( )u x u x

mu
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1,m m
m

c c

x u
L L

ρ
ξ

= =  (1.60) 

Suppose that the relative size of the hardening zone ( )1 mρ−  is given then the parameter of the 

deformation  can be obtain from the condition of continuity of stresses mu

( ) ( ) ( )
2

1 2 2

1
tanh cosh 1 sinh 1

f

f

m m m

E
σ

λ
ξ η λ ρ λ ρ η λ ρ

=
− − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (1.61) 

The parameters 1/ξ  and /m cu L ξ=  are computed from (1.61) for given values of (1 m )ρ−  and the 

external stresses fσ . Then the distribution of the shear stresses along of the nanotube axis computed from (1.59) 

for given values ξ , and mu mρ . The following parameters of the model were used for the calculation of the results 
which are shown in Figs 1.15-1.18 

41
1

2

2, 4, 20; 1.0 10G
G

η μ −= = = ⋅  (1.62) 

The distributions of the shear stresses along the nanotube axis for fixed value of 0.6mρ =  are shown in 

Fig. 1.15. The parameters ξ ,  are determined from (1.61) for each value of the parameter mu η  and then the shear 

stresses were computed from (1.59) for given values fσ , fE  etc. The results shown in Fig. 1.15 confirm that if the 

parameter η  is increased then the stress distribution in the region mt ρ>  is shifted to ideally - plastic case. 
Dependence (1.61) is presented in Fig. 1.16. The influence of the hardening parameter η  is stronger for small values 
of mρ (large size of hardening zone). The dependence of the normal critical stresses fσ  on the parameter mρ  for 

the fixed values of parameter (1/ ) ( / )m cu Lξ =  can also be found from (1.61), see Fig. 1.17. As in Fig. 1.16, the 
influence of the parameter η  is stronger for large size of the hardening zone ( )1 mρ− . The distributions of the shear 
stresses over the nanotubes length for different values of the hardening zone are shown in Fig. 1.18. The maximal 
value of the shear stress, as in the case of the linear deformation law, is attained at the nanotube end cx L= . 

Finally, we will use the similar approach for the case of the bilinear deformation law with the elastic and 
softening branches. 

The equations of the deformation law for the cases of the elastic deformation and the softening state can be 
written as follows 

1

2 2

( ), 0 ( )
( )

( ), ( )
m

i
m

u x u x u
x

u x u u x
κ

τ
τ κ

< ≤⎧
= ⎨ − <⎩

 (1.63) 

where 

(1 2
1 2 2 1, , m

G G u
H H

κ κ τ κ= = = + )2κ  (1.64) 

For deformation law (1.63), boundary conditions (1.33) and additional conditions (1.58) the shear stresses 
along the nanotube axis can be written as follows 

( )

( )
( )

( ) ( )

( )

1
1

1

2 2
2

2
2

cosh
, 0

cosh

cos 1 sin
, 1

cos 1

m
m

m

fi
m

fm
m

m

tuG t
H

t
t t

EuG t
H

λ
ρ

λ ρ
ξστ

η λ λ ρ
λ

ρ
λ ρ

⎧
≤ ≤⎪

⎪⎪= ⎨ − − −⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎪
⎪ < ≤

−⎡ ⎤⎪ ⎣ ⎦⎩

 (1.65) 
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Similarly to (1.60)-(1.61), the parameter of the deformation law  can be obtain from the condition of 
stresses continuity 

mu

( ) ( ) ( )
2

1 2 2

1
tanh cos 1 sin 1

f

f

m m m

E
σ

λ
ξ η λ ρ λ ρ η λ ρ

=
− − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (1.66) 

and then we can repeat all steps of calculations, as in the previous case. 
The following parameters of the model were used for the calculation of the results shown in Figs 1.19-1.22 
 

41
1

2

0.444, 0.667, 1., 2., 4.; 1.0 10G
G

η μ −= = = ⋅  (1.67) 

The distributions of the shear stresses along the nanotube axis for the fixed value of 0.6mρ =  are shown in 

fig. 1.19. The parameters ξ ,  are determined from (1.66) for each value of the parameter mu η  and then the shear 

stresses were computed from (1.65) for given values fσ , fE , etc. The dependence (1.66) is presented in Fig. 1.20. 

The influence of the softening parameter η  is rather strong for the whole range of values 
mρ . The dependence of 

the normal critical stresses fσ  on the parameter mρ  for the fixed values of parameter (1/ ) ( / )m cu Lξ =  can also 

be found from (1.36), see Fig. 1.21. As in Fig. 1.20, the influence of the parameter η  is rather strong for the whole 

range of the softening zone size ( )1 mρ− . The distributions of the shear stresses over the nanotubes length for 
different values of the softening zone size are shown in Fig. 1.22. The maximal value of the shear stresses is 
occurred at the point of the deformation law changing mρ  and the value of shear stress at this point is determined 
by the stiffness of the elastic deformation law. 

1.4. SUMMARY 
1) During the reported period we proposed a mechanical model of the interface adhesion of polymer matrix 

and nanotubes accounting for the dependencies of the shear stresses between matrix and nanotube versus the main 
physical-mechanical parameters of the nanocomposite material; 

2) The parametric analysis of the influence of the model parameters on the nanotubes and the interface 
layer stresses states was performed; 

3) The asymptotic cases of the stresses states for a small relative stiffness of the interface layer and a large 
relative size of the nanotube part were considered and analyzed; 

4) The comparison with published experimental data was performed and demonstrated a good agreement; 
5) The proposed multi-parametric model can be used for the theoretical analysis of properties of new 

nanocomposite materials and for analysis of the experimental data. 
The following directions of activity seem to be most important within the framework of the given model 

and the extension of this project: 
1) taking into account the compliance and strain of the polymer matrix; 
2) analysis of an influence of the molecular structure of the jointed materials on the thickness of the 

interface layer; 
3) consideration of the nanofibers with a scrimp and the nanofibers bundles; 
4) analysis of nanofibers compression taking into attention the nanfiber buckling; 
5) analysis of an influence of the interactions between the nanofibers, nanoparticles and the interface layer 

in the polymer matrix on the mechanical properties of nanocomposites; 
6) analysis of an influence of the adhesion between matrix and nanofiller on the fracture toughness of 

nanocomposites. 
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Figure 1.1. The composite. 1 – nanoinclusion; 2 –intermediate phase; 3 – matrix. 
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Figure 1.2. Model of the composite. 1 – nanoinclusion; 2 –intermediate phase; 3 – matrix. 
а) thick intermediate layer; b) thin intermediate layer.
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Figure 1.3. Relative Young’s modulus of the intermediate layer as a function of the relative concentration of 

nonoplates in the material of the intermediate phase. Solid line corresponds to Poisson’s ratio of the intermediate 
phase equal to 0.25, dashed line does to 0.45. 

 
 

 
Fig. 1.4 Nanotube (II) embedded in a polymer matrix (I) under the action of the external normal stress fσ . H is 

the interface layer thickness. 
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Fig. 1.5. Bilinear shear stress-displacement law for the interface layer 
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Fig. 1.6. Distribution of the shear stresses over the nanotube length for different values of the relative stiffness of 

the interface layer, 1μ  
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Fig. 1.7. 
Distributions of the relative shear stresses along nanotube axis for different values of the relative stiffness of the 

interface law, 1μ  
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 Fig. 
1.8. Distributions of the relative shear stress along nanotube axis for different values of the relative stiffness of the 

interface law, 1 110αμ μ=  
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Fig. 1.9. Dependencies of the shear stresses at the breaking zone vs. nanotube length for different values of the 

relative stiffness of the interface layer, 1μ  
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Fig. 1.10. Dependencies of the shear stresses at the loading zone vs. nanotube length for different values of the 

relative stiffness of the interface layer, 1μ  
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Fig. 1.11. Dependencies of the SCCF in the breaking zone vs. nanotube length for different values of the relative 

stiffness of the interface layer, 1μ  
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Fig. 1.12. Dependencies of the SCCF in the loading zone vs. nanotube length for different values of the relative 

stiffness of the interface layer, 1μ  
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Fig. 1.13. Dependencies of the normal critical stresses vs. nanotube length for different values of the relative 

stiffness of the interface layer, 1μ  
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Fig. 1.14. Dependencies of the normal critical stresses vs. nanotube length for different values of the relative 

stiffness of the interface layer, 1αμ  
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Fig. 1.15. Distributions of the shear stresses over the nanotube length for different values of the hardening 

parameter, η  
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Fig. 1.16. Dependencies of the deformation law parameter vs. the length of the elastic deformation zone for 

different values of the hardening parameter, 
mu

η  
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Fig. 1.17. Dependencies of the normal critical stresses vs. the length of the elastic zone size, for different values of 

the hardening parameter, η  
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Fig. 1.18. Distributions of the shear stresses over the nanotube length, for different length of the elastic zone size 

mρ , 4
1 10μ −= , 2η =  
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Fig. 1.19. Distributions of the shear stresses over the nanotube length for different values of the hardening 

parameter, η  

0,0 0,2 0,4 0,6 0,8
0,080

0,084

0,088

0,092

0,096

ρm=xm/Lc

η=0.444

η=0.667

η=4
η=2

η=1

σf=50 GPa
um/Lc

 
Fig. 1.20. Dependencies of the deformation law parameter vs. the length of the elastic deformation zone for 

different values of the softening parameter, 
mu

η  
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Fig. 1.21. Dependencies of the normal critical stresses vs. the length of the elastic zone size, for different values of 

the softening parameter, η  
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Fig. 1.22. Distributions of the shear stresses over the nanotube length, for different length of the elastic zone size 

mρ , 4
1 10μ −= , softening, 2η =  
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2. SIMULATION OF THE CONTINUUM BEHAVIOR WITH INTERNAL DEGREE OF 

FREEDOMS. GENERAL THEORY OF DEFECTS IN CONTINUOUS MEDIA 

 

A new general theory of defects in continuous media is introduced. The general mechanisms of generation and 
healing of defects are established. The kinematic description of continuum media with defects is presented. The 
definition of defects of different levels is given, and the classification of continuous media with defects is 
introduced. The hierarchic structure of the theory of defects is discussed. It is shown that all the known types of 
defects are naturally included in the presented classification of defects. A new broad class of defects of new types 
is established and interpreted. It is shown that the existence of new classes of defects is directly connected with 
some known theoretical and experimental data on the possibility of generation of such defects as dislocations and 
disclinations. In particular, it is shown that the generation of dislocations is necessarily connected with the 
existence of disclinations. The formal class of defects being a source of disclinations is specified. A formal 
generalization of classification of defects is developed to include the defects of any finite level. The development 
of consistent theory of defects is very important from both, fundamental and applied viewpoints. The potential 
applications include, in particular, the modeling of dispersed composite materials, porous media, dynamics of 
surface effects, crackling, cavitation and turbulence. 

 

INTRODUCTION 

Recent advances in mechanics of continuous media with defects are closely related to the developments in our 
views on strength and plasticity of solids with local disturbances contributing to their overall behavior. 
Considerable achievements in creation of new technologies and materials are tied to the success in experimental 
and theoretical studies of the atomic structure, properties and behavior of defects, such as dislocations, 
disclinations, point defects, inclusions and interfaces. From one side, the language of the theory of defects is 
sufficiently universal means of interaction between the researchers working in mechanics, physics and material 
science. It allows describing from the common ground the variety of the different scale physical processes in the 
deformable media. From the other side, it is also known that in many cases the defects are being formed already 
at the processing stage for a number of new promising nano- and noncristallic materials like, for example, 
amorphous crystallic composites, nanocomposites, quasi-crystallic, nano-quasi-cristallic and some other 
materials [Gutkin (2000)]. These inherited defects affect the overall operational properties of these materials. 
That is the reason why the theory of defects became so important topic in the modern research and gained the 
considerable development. Many practically important phenomenological models in theory of defects have been 
significantly revised in the recent studies. 
Different types of defects are introduced and analyzed in [Nabarro F.R.(1967), Kroner E.,  (1962,1982)]. The 
achievements in the continuum theory of defects, see e.g., [Kroner E.  (1982), De Wit R.(1960,1973), Kadic, A., 
and Edelen  (1983)], proved to be very important for the further studies of plastic deformation and for modeling 
of media on account of scale effects of different levels. The development of continuum models of defects beyond 
the classical elasticity appears to be very important for the description not only limited to the short-range 
interactions typical for the interaction of defects, but also for the modeling of size-dependent effects in elasticity 
and plasticity. Recently these models were developed in the framework of the gradient elasticity [Gutkin (2000) 
Aifantis E.C.,(1994,1999)] and gradient plasticity [Fleck, N.A., and Hutchinson, J.W.(1993, 1997,2001); Gao, 
H., Huang, Y., Nix, W.D., and Hutchinson, J.W., (1999)]. It has been shown that the gradient theories are quite 
effective in the analysis of the media at the nano- and micro-levels. 
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The kinematics of defects is a basis in development of phenomenological continuum models in the theory of 
defects. Firstly, the kinematics of defects (inconsistencies) is the most important element in application of the 
variational methods for the description of the higher order energetically consistent continuum gradient models, 
see [Fleck, N.A., and Hutchinson, J.W.(1993, 1997,2001); Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W., 
(1999); Mindlin R.D (1964)]. Indeed, the kinematics of defects allows to establish a set of arguments for the 
correct formulation of the variation of energy functional. Secondly, the kinematic analysis allows to establish the 
relation between the different types of defects and to analyze the reasons and conditions for their generation and 
disappearance [Kroner E., (1962,1960); De Wit R(1960,1973); ) Aifantis E.C.,(1`994,1999 ); Fleck, N.A., and 
Hutchinson, J.W.(1993, 1997,2001); Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W., (1999)]. 
The possibility of generation (or birth) and disappearance (or healing) of the defects of such two levels as 
dislocations and disclinations in the continuous media has been established theoretically and experimentally, see 
e.g., [Kadic, A., and Edelen  D.G.B., (1983); Likhachev, V.A., Volkov A.E., and Shudegov V.E., (1986)]. It has 
been also shown experimentally that the dislocations on disclinations can be borne and disappear. We are not 
familiar at the present time with experimental studies that would establish the sources of disclinations with the 
similar clarity. Nevertheless it is possible to state that the fact of generation and disappearance of disclinations 
has been demonstrated experimentally, and therefore the existence of sources of disclinations has been 
established.  
In the present paper we introduce a new general kinematic theory of defects in continuous media. And we 
establish the general mechanisms of existence of defects, their generation (or birth) and disappearance (or 
healing).  
The significance of the present work is, in particular, in discovering the interconnection between the developed 
kinematic models for the continuous media with defects and their role in the hierarchy of multi-scale modeling.  
The outline of the paper is as follows. In Section 2, the Cauchy continuous media with and without defects and 
the scalar potential are introduced and discussed. In Section 3, the Papkovich-Cosserat media are defined, the 
vector potential and vector field of defects are analyzed. The Saint-Venant continuous media with and without 
defects, tensor potential and tensor field of defects are introduced and investigated in the Section 4. The N-th 
level media models and tensor potential of N-th rank are defined and considered in the Section 5. That is 
followed by the classification of the fields of defects developed in the Section 6. Section 7 provides the 
conclusions for the present study. 

 

2.1. THE CAUCHY CONTINUOUS MEDIA MODEL. SCALAR POTENTIAL 

2.1.1.  Defectless Cauchy Medium 

Let us denote the continuous vector of displacements in the domain  V  by )(MRi . And let us establish the 

conditions under which displacement vector iR  can be represented as a gradient of a scalar function )(0 MD , 

i.e., 

i
i x

DR
∂
∂

=
0

 .           (2.1) 

For an arbitrary point 0M  and a variable point M in the domain V,  the  scalar potential in Eq. (2.1) is 

determined in terms of the displacement vector iR  in the following way: 

ii

M

M

dyRMDMD ∫+=
0

)()( 0
00         (2.2) 
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The condition of unique determination of the scalar function 0D  by means of the displacement vector iR  in 

arbitrary point M of the medium under study is equivalent to the condition of independence of the contour 
integral in Eq. (2.2) from the integration path: 

0=
∂
∂

ijk
j

i Э
x
R

,           (2.3) 

where ijkЭ  is the permutation symbol.  

Note that the vector of curls kω  is defined by the formula 

ijk
j

i
k Э

x
R
∂
∂

−=
2
1ω

. 
Therefore, the necessary and sufficient condition of existence of the scalar function )(0 MD  in Eq. (2.2) can be 

interpreted as a condition of absence of curls kω : 

0=kω .           (2.4) 

Eq. (2.4) defines the “defectless Cauchy continuous medium” as such a medium in which curls are absent and the 
displacement field has a scalar potential.  
It is well known that for a formal mathematical description of a continuous medium in the framework of a 
variational approach [Fleck, N.A., and Hutchinson, J.W., (2001), Mindlin R.D. (1964)] it is sufficient to define a 

list of continuous arguments. For the defectless Cauchy medium the scalar potential )(0 MD  can be chosen as a 
generalized coordinate. Therefore the defectless Cauchy medium is a model with one degree of freedom. 

 

2.1.2.  Cauchy Continuous Medium with Defects 

As it was established above, the displacement field in the defectless Cauchy medium is defined as a gradient of a 

scalar field )(0 MD ; the contour integral in Eq. (2.2) does not depend on the integration path; and vector of curls 
is zero. In other words, the displacement vector in the defectless Cauchy medium can be defined as a general 
solution of the homogeneous equation (2.3). That represents a formal property of the defectless Cauchy medium, 
that is equivalent to the absence of curls. 

On the contrary to that, the Cauchy continuous medium with the field of defects is characterized by a presence of 

non-zero curls: 

kijk
j

i Э
x
R

ω2−=
∂
∂

.   (2.5) 

And in this case, the general solution of Eq. (2.5) for the displacement field will consist of two components:  

1
0

i
i

i D
x
DR +
∂
∂

=  ,  (2.6) 

where 

kijk
j

i Э
x
D

ω2
1

−=
∂
∂

.  (2.7) 
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The first component in Eq. (2.6) is a general solution of the homogeneous equation (2.3), and it is  the integrable 
part of displacements. The second component in Eq. (2.6) is a particular solution of Eq. (2.5), or Eq. (2.7). And 
therefore it defines a part of displacements that is related to the defectness of medium. Function 1

iD  unlike of 

function 
ix

D
∂
∂ 0

, is non-integrable since the integrability condition for this function is not satisfied.  

The following formal definition for the potential of displacement field can be given:  
10 DDD +=            (2.8) 

Function )(MD  in Eq. (2.8) defines the scalar field in the Cauchy medium. It is represented as a sum of )(0 MD  and 

some other scalar function )(1 MD  that is determined from the particular solution of the Eq. (2.7) )(1 MDi  as follows: 

ii

M

M

dyDD
x

11

0

∫=  .  (2.9) 

Scalar field )(1 MD  in Eq. (2.8) defines a field of discontinuities (or jumps) of potential of displacement field, and it is 

determined from the non-integrable part of displacements 1
iD . Contour integral in Eq. (2.9) depends on the integration 

path. By definition, its value at any point iio dyDMJM 1
0

1 )(, ∫=  depends on a trajectory of integration.   

The scalar function )(1 MD  is not differentiable in the common sense, otherwise it would satisfy the 

homogeneous equation (2.3). The generalized derivative of the function )(1 MD  can be formally defined as follows: 

ix
D
∂

∂ 1

= 1
iD  . 

  Let as define now the Cauchy continuous medium with defects as such that the curls )2( kω− are the sources of 

defects )(1 MD . Under the defects in the Cauchy model we will call the discontinuities of the scalar potential of 

displacement field. Such defects are defining the continuous field 1
iD on which the field of defects  1J  is constructed.  

The major feature of the above model of medium with defects is that there is no generation of new defects of the 

above-indicated type. In other words, the source of curls ijk
j

i
k Э

x
D
∂
∂

−=
1

2
1ω  is absent. The following differential law 

of conservation takes place: 

0
)2(
=

∂
−∂

k

k

x
ω

 

This law can be represented in the integral form: 

∫∫ = 0dFnkkω  

Later expression demonstrates the absence of generation of defects in the considered representative volume of 

the medium. Let us note that for the Cauchy medium with defects the generalized coordinates are continuous functions 
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)(0 MD and )(1 MDi . They can serve as the arguments of the corresponding functional. Therefore, the Cauchy 

medium with defects is a model with four degrees of freedom. In this case, the gradients of the generalized coordinates 

ix
D
∂
∂ 0

 and 
j

i

x
D
∂
∂ 1

 are the generalized velocities of the corresponding kinematic state. It can be also observed that in the 

particular case when 00 =D , the Cauchy medium model coincides with the classical model of theory of elasticity, in 

which the generalized coordinates in the variational description are the components of the displacement vector 
1
ii DR ≡ , since 0)(0 ≡MD . 

 

2.2.  THE PAPKOVICH - COSSERAT CONTINUOUS MEDIA MODEL.  VECTOR POTENTIAL, VECTOR 

FIELD OF DEFECTS 

2.2.1  Defectless Papkovich Medium 

Consider a continuous medium with a non-symmetrical distortion tensor ind 0
 defined as a gradient of some 

continuous vector field 0
ir  

j

i
ij

x
r

d
∂
∂

=
0

0  .  (2.10) 

It is well known that a tensor of a second rank ind 0  can be resolved as follows:  

inkkininin Эd 0000

3
1 ωδθγ −+= , 

where term inin δθγ 00

3
1

+  defines a symmetrical part of the tensor ind 0 , and the term inkkЭ0ω  defines its anti-

symmetric part; in
0γ  is a deviator tensor or deviatoric strain; inδθ 0

3
1

 is a spherical tensor; and 0θ is an amplitude of 

the spherical tensor. 

Consider now the homogeneous Papkovich equations that represent the existence conditions for the curvilinear 
integral in definition of the displacement vector 

0),( 0 =nmjmin Эd  .  (2.11) 

Eq. (2.11) is the existence criterion for the vector potential of the distortion tensor 

inkkininin Эd 0000

3
1 ωδθγ −+= . This vector potential 0

ir  is the displacement vector. There is a full analogy here with 

the case of scalar potential for the displacement vector iR  in the defectless Cauchy continuous medium. 
We will define a defectless Papkovich medium as a medium with a continuous vector potential of the distortion 

tensor of deformation. In the defectless Papkovich medium the displacement vector is continuous and the distortion 

tensor ind 0
 is a general solution of the homogeneous equation (11). That corresponds to the case of absence of defects 

– dislocations. In the general case, the defectless Papkovich medium is the Cauchy medium with a continuous 
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displacement vector. Similarly to the Cauchy medium, the scalar defects are present here since the continuous 

displacement vector contains both the integrable part 
ix

D
∂
∂ 0

, as well as a continuous but non-integrable in the sense of 

Eq. (2.2) part )( 1
1D : 

1
0

0
i

i
i D

x
Dr +
∂
∂

=  

In particular, in the case  00 ≡D , the defectless Papkovich medium model coincides with the model of classical 

theory of elasticity. In this case the displacement vector is continuous, but generally non-integrable in the sense of Eq. 

(2.2), i.e., the scalar potential for the displacement field does not exist. In the more special particular case 01 =iD  the 

defectless Papkovich medium is completely defectless since both, the dislocations (the vector defects) and the scalar 

defects are absent in this case. 

 

2.2.2  Papkovich-Cosserat Continuous Medium with Defects 

In the defectless homogeneous Papkovich medium the distortion tensor is integrable since it can be determined from 

the Eq. (2.10) by means of integration over the displacement vector, and the integrability conditions (2.11) are fulfilled.  

On the contrary to that, for the Papkovich-Cosserat medium with defects, the distortion tensor of deformation ijd  can 

be represented in the general case as a sum of two parts: the integrable part ( 0
ijd ), and the non-integrable part ( 2

ijD ), 

ijd = 0
ijd  + 2

ijD  .  (2.12) 

where   ijkkijijij Эd 0000

3
1 ωδθγ −+=  . 

Note that Eq. (2.12) is analogous to the Eq. (2.6) written for the Cauchy medium displacement vector. 

Following the common procedure let us consider now the non-homogeneous Papkovich equations 

ijnmjminkkininnmjmin ЭЭЭd Ξ=−+= ),
3
1(),( ωθδγ  .  (2.13) 

Here minkkininmin Эd ),
3
1(),( ωθδγ −+=  is the general tensor filed of curvatures of the model under consideration. 

On account of relations (2.11) and (2.12), Eq. (2.13) yields 

ijnmjmin ЭD Ξ=),( 2           (2.14) 

The continuous tensor of “inconsistencies” ijΞ  defines the non-homogeneity of the Papkovich relations. The following 

differential conservation law is valid for this tensor: 
 

0=
∂

Ξ∂

j

ij

x
. 

In order to prove that, we will first apply the divergence operator to the left and right sides of equation (2.13) 
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j

ij
nmj

m
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j x
Э

x
d

x ∂

Ξ∂
=

∂
∂

∂
∂ )(  

In the left-hand side of this expression we have  nmj
mj

in
nmj

m

in

j

Э
xx

d
Э

x
d

x ∂∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂ 2

. Evidently, the term 
mj

in

xx
d
∂∂

∂ 2

 is 

symmetrical tensor with respect to indexes j and m. From the other side, by definition the permutation symbol nmjЭ  is 

anti-symmetric tensor for the same pair of indexes. Therefore the convolution of tensors 
mj

in

xx
d
∂∂

∂ 2

 and nmjЭ  in indexes 

j and m is equal to zero, which proves the above conservation law. 

The solution of the above non-homogeneous Papkovich equation (2.13) with respect to ijγ , kω  and θ  can be 

represented as a sum of the following general solution of the homogeneous Papkovich equation for
0
ijγ , 

0
kω , 

0θ  : 
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=
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0θ , 

and the partial solution of the non-homogeneous Papkovich equation (2.13) denoted by  Ξγ ij , Ξωk  and Ξθ . As a result, 

we can write 

ΞΞ γδγγγ ijij
k

k

i

j

j

i
ijijij x

r
x
r
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0

k
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and  

 ijd = 0
ijd  + Ξ

ijd  ,  inkkininij Эd ΞΞΞΞ ωδθγ −+=
3
1

 . 

The partial solutions of non-homogeneous Papkovich equation with respect to distortion tensor Ξ
ijd , or with respect to 

Ξ
ijγ , Ξ

kω  и Ξθ , which is the same, can be considered as the degrees of freedom that are independent of displacements. 

For the full analogy with the earlier considered case, the distortion tensor inkkininijij ЭDd ΞΞΞΞ ωδθγ −+=≡
3
12  can be 

considered as “generalized displacements”(“plastic distortion” [De Wit R., (1973)]. Since the “inconsistencies” tensor 

ijΞ  is related to the “generalized displacements” through the following relations: 

nmjminkkininij ЭЭ ),
3
1( ΞΞΞ −+=Ξ ωδθγ        (2.15) 
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it can be interpreted as the tensor  of “generalized strains” for these “generalized displacements”.  

Using the Cosserat terminology, we can call ijk
j

i
k Э

x
r
∂
∂

−=
0

0

2
1ω  as the restricted curl, and Ξ

kω  - as a free curl or spin 

(“plastic curl” [De Wit R., (1973)]).  Analogously we will call 0
ijγ  and 0θ  as restricted strains and  Ξ

ijγ ,  Ξθ  as the free 

strains. 

Eqs. (2.11) - (2.15) describe the kinematics of continuous media with defects of a dislocation type. These relations lead 

to the following conclusions: 

1. The fields of free strains and spins cannot be uniform because in that case 0=Ξij . 

2. The fields of spins have the sources.  

Indeed, we can show by making use of Eq. (2.15) that the field of spins is not a vorticity field. By applying  

convolution of left and right sides of Eq. (2.15) with ijδ we obtain 

0
2
1

≠Ξ−=
∂
∂ Ξ

kk
k

k

x
ω

. 

At the same time, the following equality takes place for the vortex fields with the vector of curls 0
kω : 

0
0

=
∂
∂

k

k

x
ω

. 

Let us call the models of continuous media with vector potential as the Papkovich-Cosserat media. The kinematics 

of such media has the following structure: 

 

• The displacement field iR  represents a superposition of the following two fields: the continuous field 0
ir  and the 

field of displacement jumps or discontinuities 2
iD , i.e.,   

21
0

20 )( ii
i

iii DD
x
DDrD ++
∂
∂

=+= ;    j

M

M
iji dyDD ∫=

0

22 ,   

 ( ijkkijijij ЭD ΞΞΞ ωδθγ −+=
3
12 ). 

 The classical displacements iR  are determined by the continuous part only, and they can be represented as 

follows:  0
ii rR ≡ ,  1

0
0

i
i

i D
x
Dr +
∂
∂

=  . 

 Unlike of the continuous displacement field iR , the vector field iD  defines the complete displacement field with 

account of dislocations (jumps). The defective displacements iD  are the sum of the classical displacements iR , 

( 0
ii rR ≡ ) and the dislocations 2

iD . 
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• The field of displacement jumps 2
iD  can be expressed in terms of fields of free strains and spins by means of the 

following relation (analogous to the Chesaro formula): 

  jijkkijij

M

M
j

M

M
iji dyЭdyDD

x

)
3
1(

00

22 ΞΞΞ −+== ∫∫ ωδθγ ; 

• Tensor of “inconsistencies” of displacements ijΞ  is the tensor of dislocations, see [De Wit R., (1973)].  

• The following differential conservation law takes place for the dislocation tensor: 

0=
∂
Ξ∂

j

ij

x
. 

• This conservation law can be represented in the integral form as follows: 

   0=Ξ=
∂

Ξ∂
∫∫∫∫∫ dFndV

x jij
j

ij  

• The flux of tensor ijΞ through the plane of planar contour can be chosen as a measure of defects (dislocations) 

[4-6]: 

  dFndFn ijjjij Ξ=Ξ ∫∫∫∫
+ 0

, 

      where F is a closed surface stretched over the planar contour. 

In other words, the flux of tensor ijΞ  through the arbitrary surface stretched over the chosen planar contour is 

invariant. Therefore, it can be chosen as a measure of dislocations.  

It is important to note that one of major features of the Papkovich-Cosserat continuous media is that it is not 

possible to describe the birth or disappearance of dislocations in the framework of these media models because 

0=Ξ∫∫ dFnjij . Therefore, the defects associated with the conserved dislocation tensor ijΞ  cannot be born or 

disappear, [Kroner E(1982), De Wit R., (1973)]. 

There are two levels of defects in the Papkovich-Cosserat media. The defects of the first rank are related to the 

conserved dislocations and they are defined by the formula 

j

M

M
iji dyDD ∫=

0

22  

The zero-rank defects are associated with the two types of scalar defects. First type is related to the conserved 

scalar defects defined by a scalar field (2.9), ii

M

M

dyDD 11

0

∫= , see the Cauchy media. The second type is related to such 

scalar defects that have the conserved dislocations as their sources. These later scalar defects are described by the field 
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i

M

M
i dyDD ∫=

0

22 , where jij

M

M
i dyDD 22

0

∫= . They, evidently can be born or can disappear because as it was shown 

earlier, the fields of spins have the sources,  0
0

≠
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂ ΞΞ

k

k
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xxxx
ωωωω

. 

Note that under the generalized defects we mean the discontinuous part of the considered kinematic characteristics 

of the medium. The corresponding field is called the defectness field. 

In the general case of the Papkovich-Cosserat media the defectness fields of different ranks (scalar, vector and 

tensor) are defined by the following relations: 

• Defectness field of a zero-rank (scalar): 

210 )( DDDD ++= ,   ii

M

M

dyDD
x

11

0

∫= ,  ii

M

M

dyDD
x

22

0

∫= ,  jij

M

M
i dyDD

x
22

0

∫= ; 

• Defectness field of a first-rank (vector): 
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)( ii
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i DD
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∂
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x
22
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∫= ; 

• A tensor characteristic of the Papkovich-Cosserat media is the tensor field 

21
0

)( iji
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ij DD
x
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D ++

∂
∂

∂
∂

=  ,  ijij dD ≡ ,   ( ijkkijijijij ЭdD ΞΞΞΞ −+== ωδθγ
3
12 ), 

here ijd  is a distortion tensor in the Papkovich media. 

However, the tensor field ijD  is not a defectness field of a second rank since it does not contain a discontinuous 

part. First component in the above expression for ijD  is a continuous and integrable part of the tensor field,  

),( 1
0

0
i

ij
ij D

x
D

x
d +

∂
∂

∂
∂

=   0),( 0 =nmjmij Эd  . 

The second component 2
ijD  in the above expression is a continuous non-integrable part, see Eq. (2.14). It should be 

noted for a comparison that among the characteristics of the Cauchy medium, apart of a scalar field of defects 

10 DDD +=  (where 1D  is a discontinuous component), is also a vector field 1
0

i
i

i D
x
DD +
∂
∂

=  that is not a 

defectness field.  

The Papkovich-Cosserat media allow two different types of the sources of defects: 

1.   The sources of a second rank (sources of dislocations) 2
ijT  are defined by a tensor ijijij TT Ξ=≡ 2  

nmj
m
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2.    The sources of a first rank (sources of the scalar defects) iT  are defined by the spins, i.e., by a vector which can be 

obtained through the convolution of the total tensor of deformations nmD  with the tensor nmjЭ  in indexes n and m: 

nminmn
m

ii ЭDR
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TT ))(( 21 +
∂
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=≡ ,  ( 0
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∂
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The sources of defects 1)( iT  are related only to the conserved scalar defects 1D , since the vector of restricted 

curls  nmi
m

n
i Э

x
RT
∂
∂

=1)(  in the general case is not zero, see the Cauchy media. These sources of defects satisfy the 

conservation condition:  
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For the sources of defects 2)( iT  the conservation condition is not satisfied: 
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Therefore, these sources of the scalar defects can be born and can disappear.  

 

2.3.  THE SAINT-VENANT CONTINUOUS MEDIA MODEL. TENSOR POTENTIAL, TENSOR FIELD OF 

DEFECTS. 

In order to construct the models that will allow the birth and disappearance of dislocations, it is necessary to develop 

the kinematic continuous media models of a higher order. We will call them the Saint-Venant continuous media.  

 

2.3.1.  Defectless Saint-Venant Medium 

Let us introduce the curvatures:  
k

ij
ijn x∂

∂
=

γ
γ ,   

j
j x∂

∂
=

θθ ,   
j

i
ij x∂

∂
=

ω
ω .    These tensors formally define a tensor of 

curvatures of a third order, [Fleck, N.A., and Hutchinson, J.W.(1993, 1997,2001); Gao, H., Huang, Y., Nix, W.D., and 

Hutchinson, J.W., (1999); Mindlin R.D (1964], ijnD ( inω , nθ , ijnγ ), which is a derivative of the distortion tensor, i.e., 
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ijnjin Dd =),(  ,      nijn

M

M
ijij dxDMdd ∫+=

0

)( 0       (2.16) 

Here ind  is the distortion tensor, and ijqqnijnijnijn ЭD ωδθγ −+=
3
1

, also  ,jinijn γγ =  0=kknγ . 

Following the common procedure let us consider the conditions of integrability for the distortion tensor  

0=
∂

∂
nmk

m

ijn Э
x
D

          (2.17) 

Eq. (2.17) represents the existence conditions for the contour integral (or integrability conditions) in the definition of 

distortion tensor ind  in terms of tensor of curvatures ijnD . Let us call relations (2.17) as the generalized Saint-Venant 

relations. The integrability conditions represent the existence criterion for the tensor potential of the tensor of 

curvatures jinijn dD ),(= . The role of this tensor potential of a second rank is played by the distortion tensor ind .  

There is a full analogy here with the case of scalar potential for the vector iR (the above Cauchy continuous media 

model) as well as with the case of vector potential for the distortion tensor (the above Papkovich-Cosserat continuous 

media model). 

Let us now prove that Eq. (2.17) is a generalization of the well-known Saint Venant’s compatibility equations. 

First we will rewrite the Eq. (2.17) as follows: 
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Allocate in the tensor equation (2.18) the anti-symmetric in indexes i ,  j part. Since first two terms are symmetric in 

these indexes, we get 
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ijqqn Э
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Эω

 

This equation represents an existence condition for the vector potential iω  for curvatures ijω , (
j

i
ij x∂

∂
=

ωω ). 

From the other side, we know that the integrability, and therefore the existence conditions of the vector of spins is 

given by Saint-Venant’s equations. The above equation coincides with the known Saint-Venant’s equations if 
j

i

x∂
∂ω

 is 

expressed in terms of the derivatives of the components of tensor of deformations. Consequently, Eq. (2.17) contains 

the Saint-Venant equations as a particular case. 
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It is easy to obtain the following generalized Saint-Venant’s equation (i.e., the compatibility equation) for 

curvatures nθ , from the Eq. (2.18) by means of symmetrization and allocation of the spherical part in indexes i,j: 

0=
∂
∂

nmk
m

n Э
x
θ

, 

as well as the generalized Saint-Venant’s equation for the curvatures ijnγ  

0=
∂
∂

nmk
m

ijn Э
x
γ

. 

The above generalized compatibility equations are new. They probably fell out of attention of researchers in earlier 

studies because in the framework of the classical theory there was no need to define the deformations ijγ  and θ  in 

terms of the curvatures ijnγ , jθ . The generalized compatibility equations represent the existence conditions for the 

potentials ijγ  and θ  for the corresponding curvatures 
n

ij
ijn x∂

∂
=

γ
γ , 

j
j x∂

∂
=

θθ .  We will call the media under study as 

the Saint-Venant continuous media precisely because the generalized Saint-Venant’s equations (2.17) lay the basis for 

the analysis of their kinematics. In the defectless Saint-Venant media the tensor of curvatures ijnD  is integrable in the 

sense of Eq. (2.16). The distortion tensor ijd  can be determined uniquely from ijnD , since the integrability conditions 

(2.17) for ijnD  are fulfilled. In the defectless Saint-Venant’s media the distortion tensor ind  is continuous and the 

tensor of curvatures ijnD  is a general solution of the homogeneous equation (2.17).  

Note that in the defectless Saint-Venant media the generalized disclinations are absent. In these media, similarly to 

the Papkovich-Cosserat media with defects, only the conserved dislocations 2
iD  can be present (the defects of a first 

rank), as well as two types of scalar defects 1D  and 2D ; 1D  being the conserved scalar defects, and 2D - the scalar 

defects that can be born and disappear on the conserved dislocations 2
iD .  

 

2.3.2. Saint-Venant Continuous Medium with Defects – Generalized Disclinations 

In the general case when the integrability conditions (2.17) are not fulfilled, the following non-homogeneous equation 

takes place: 

ijknmk
m

ijn Э
x
D

Ω=
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∂
         (2.19) 

Here ijkΩ  is the continuous tensor of “inconsistencies” given by the relation 

ijqqkijkijkijk ЭΩ−Θ+Γ=Ω δ
3
1

        (2.20) 

Tensor ijkΩ  is a reason of non-homogeneity of the generalized Saint-Venant conditions (2.19). 



 

 
44

Alternating and balancing Eqs. (2.19) and (2.20) with respect to the first two subscripts, we obtain 
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 (2.22) 
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  (2.23) 

By continuing and generalizing the common algorithm we can assume that the curvature fields are integrable or non-

integrable depending on equality or non-equality to zero of the corresponding  tensors of “inconsistencies” ijΩ , jΘ  

and ijkΓ . Let us assume that the tensors of “inconsistencies” [De Wit R(1973)] ijΩ , jΘ  and ijkΓ  are not equal to zero.  

By the virtue of Eq. (2.20) these tensors satisfy the following differential conservation laws: 
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The fields of full curls can be divided into two parts: continuous part and a part of jumps  or discontinuities (spins),   
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 can be interpreted as the general solution of the homogeneous Saint-Venant’s 

equation (2.21) 
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, 

 and field of jumps Ω
ijω , that can be interpreted as a partial solution of the non-homogeneous Saint-Venant’s equation 

(2.21) 
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Analogously the strain fields can be also divided into two parts: continuous part and a part of jumps or discontinuities, 
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02
0  is the general solution of the homogeneous equation (2.22) 
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 and field of jumps Ω
iθ is a partial solution of the non-homogeneous equation (2.22) 
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 can be interpreted as the general solution of 

the homogeneous equation (2.23) 
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 and field of jumps Ω
ijkγ  can be interpreted as a partial solution of the non-homogeneous Eq. (2.23) 
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As a result, the particular solution of the Eq. (2.19): 3
ijkD can be determined: 
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Note that in the Saint-Venant media it is possible to define a tensor field of a third rank: 
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Let us call the defectness field such a field that contains not only a continuous part but also a field of defects. 

Tensor field ijkD  is not a defectness field, similarly to the fact that tensor field of a second rank ijD  is not a defectness 

field in the Papkovich-Cosserat media of a lower level.  

The defective fields of different ranks (scalar, vector and tensor) in the Saint-Venant media are defined by the 

following relations: 

• Defectness field of a zero rank (scalar): 
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• Defectness field of a first rank (vector): 
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Defectness field of a first rank defines the general defectness field of displacements that includes all types of 

dislocations: 
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• Defectness field of a second rank 
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In the scalar defectness field D  the defects are defined by 1D , 2D , 3D ; in the vector field iD  – by 2
iD , 3

iD . In 

the tensor defectness field ijD  the defects are defined by 3
ijD . There is a full analogy here with the case of Papkovich-

Cosserat media.  

The continuous parts in the right-hand sides of the defectness fields of the first and second ranks are shown in 

the brackets: 
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Let us analyse now the sources of dislocations in the Saint-Venant medium. The sorces of dislocations are defined 

by the anti-symmetric part of the general tensor of curvatures (defectness tensor field) similarly to Eq. (2.5) for the 

Cauchy media and Eq. (2.13) for the Papkovich-Cosserat media. Then 
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3
1),(  (2.24) 

Note that the meaning of the density of dislocations ijΞ  in the Eq. (2.24) differs in the general case from the 

meaning of the density of dislocations in the Papkovich-Cosserat medium, Eq. (2.14). Equality (2.24) allows to 

establish a structure of the density of dislocations in the Saint-Venant medium. We have 

jkqijkjkq
k

ij
jkqijkiji

i

i

jk
jkqjkqijk ЭDЭ

x
D

ЭDDD
x
D

xx
ЭЭD 3

2
321

0

])([ +
∂

∂
=+++

∂
∂

∂
∂

∂
∂

= , 

ijkkijijijij ЭdD ΞΞΞΞ ωδθγ −+==
3
12 ,          ijqqkijkijkijk ЭD ΩΩΩ ωδθγ −+=

3
13 . 

 

Therefore, the quantity ijΞ  from (2.24) can be written as 

32)
3
1()

3
1( imimjnmijkknijnijnjnmijkkijij

n
im ЭЭЭЭ

x
ΞΞωδθγωδθγΞ ΩΩΩΞΞΞ +=−++−+

∂
∂

= , 

where   jkq
k

ij
iq Э

x
D
∂

∂
=

2
2Ξ ,    jkqijkiq ЭD32 =Ξ . 

First component in the above equality for the density of dislocations iqΞ  defines the conserved vector field of defects – 

dislocations, and it coincides with the density of dislocations in the Papkovich-Cosserat medium. The second 

component 3
iqΞ  is related to the defects of a higher level, i.e.,  disclinations. This component of the density of 

dislocations defines the defects that can be born or disappear on the disclinations. 

In order to use the unified notation for sources of defects (similarly to the Papkovich-Cosserat media case) we 

will adopt the following notation: 
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3
ijkijkijk TT =≡Ω , 
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321
0 )()()()(2 iiiiiii TTTT ++==++− ΩΞ ωωω . 

The above relation (2.24) represents the existence condition for the dislocations. Correspondingly, the right-hand 

sides of the Eq. (2.24) are the sources of dislocations. Therefore by means of nine non-homogeneous Papkovich 

equations we can express nine components of the tensor of curvatures ijω  in terms of dislocation tensor ijΞ , vector 

mθ  and the remaining curvatures  inmγ : 
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The existence conditions for jumps (or discontinuities) in full curls iω   will follow from the generalized Saint-

Venant’s equations: 
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The existence conditions for jumps or discontinuities in the free change of volume after excluding the curvature tensor 

kθ  by means of Eq. (2.25) and on account of the generalized Saint Venant equations lead to the generalization of the 

differential conservation law for dislocations. Indeed, let us express explicitly the curvatures related to the free change 

of volume from  (2.25) 
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Substitute the obtained expressions for 
i

j

x∂
∂θ

 into the existence conditions for jumps (or discontinuities) in the free 

change of volume 
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We obtain the following chain of equalities, making use of the equality (2.24): 
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By moving the divergence of the dislocation tensor to the left-hand side, we will finally arrive to the following 

equation: 
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∂
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3
1        (2.26) 

Eq. (2.26) transforms into the conservation law for the dislocation tensor in the Papkovich-Cosserat media model in the 

case of zero right-hand side, i.e., 0
3
1

=Γ+Ω−Θ nnjiijЭ μμμ . For non-zero right-hand side this equation will describe 

the birth and disappearance of dislocations. 

Eq. (2.26) can be represented as follows using the above introduced notation: 
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,    ( ijij T≡Ξ , ijkijk T≡Ω ). 

We will interpret the field of jumps Ω
iω  (the Frank vector field) as a vector field of disclinations, and we will call 

the tensor of “inconsistencies” ijΩ  as the tensor of disclinations, following De Wit [6]. Note that unlike of classical 

view, the dislocations can be borne and disappear even in the absence of disclinations, i.e., 0=Ωij , if we will take into 

account existence of two new classes of defects defined by the ”inconsistencies” tensors μΘ  and nnμΓ . These tensors 

like the disclinations are equally possible sources of dislocations. And the defects defined by these tensors play the 

same role as the disclinations play in birth and disappearance of dislocations. 

Let us call the scalar field of jumps in the change of volume Ωθ  as pores, and the vector of “inconsistecy” of 

free change of volume jΘ  as vectors of cavitation. We will also call the tensor field of jumps in deviator Ω
ijγ  as the 

field of twinning, and the “inconsistencies” tensor ijkΓ  as a tensor of twinning. 

The Saint-Venant continuous media are described in the general case by forty degrees of freedom: 0D 0
ir , Ξ

kω , 

Ξθ , Ξ
ijγ , Ω

ijω , Ω
jθ , and Ω

ijkγ . They allow a three-level system of defects. The zero level of defects includes three types 

of defects: 1D , 2D , 3D . The first level of defects corresponds to dislocations that may be conserved, as well as they 

may be borne or disappear. The second level of defects corresponds to the non-conservable disclinations, cavitations 

and twinnings. The set of the Saint-Venant media contains in itself the sub-sets of the Papkovich-Cosserat media as 

well as the Cauchy media. The Papkovich-Cosserat media are described by thirteen degrees of freedom: 0D  0
ir , Ξ

kω , 

Ξθ , and Ξ
ijγ .  And the classical Cauchy media are described by only three degrees of freedom 0

ir . 
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The following models can be constructed in the framework of the Saint-Venant kinematic continuous media model 

as the particular cases: 

• Media with “turbulence” described by fifteen degrees of freedom 0
ir , Ξ

kω , and Ω
ijω , in which the spins Ξ

kω  are 

conserved but the spins Ω
kω  may be borne or disappear; 

• “cavitational” media described by seven degrees of freedom 0
ir , Ξθ , and Ω

jθ , in which the pores Ξθ  are 

conserved but the pores Ωθ  may be borne or disappear; 

• media with twinning described by twenty-three degrees of freedom 0
ir , Ξ

ijγ , and Ω
ijkγ , in which the free shifts 

Ξ
ijγ  are conserved but the free distortions Ω

ijγ  may be borne or disappear, like it happens for example in the 

processes of crystallization or polymerization. 

 

2.4. THE N-TH LEVEL CONTINUOUS MEDIA MODEL. TENSOR POTENTIAL OF N-TH RANK. 

In this section we develop the kinematic model for defects of (N-1)-th level. For this purpose, we define the conserved 

tensor of “inconsistencies”  ρρ ...... TT N ≡  of ( N )-th rank from the equation 

0... =
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∂

ρ

ρ

x
T N

  (2.27) 

where ρ  is a last N -st subscript of the tensor of “inconsistencies”. Then the field of multi-strains nD ...  of N-th rank 

will be defined as a general solution of the conservation equation (2.27) 
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Representing the solution of this non-homogeneous equation of compatibility as a sum of the general solution  
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D
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∂ ...  

of the homogeneous equation (2.27) ( 0... =
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) and a particular solution N
nD ...  of the non-homogeneous Eq. 

(2.28) we obtain 
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Here tensor ...D  of ( N -1)-st rank can be interpreted as a tensor potential for some tensor of N-th rank. Let us call this 

tensor 
nx

D
∂

∂ ...  as a tensor of restricted (integrable) multi-deformation; and the tensor N
nD ...  we will call a tensor of a 
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free (non-integrable) multi-deformation. From the other side, ...D  can be considered as a continuous part of the field 

of multi-displacements. By representing the field of multi-displacements in the form analogous to the field of multi-

strains we can write for the tensor of multi- displacement: 
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Therefore the tensor of multi-displacements is represented as a sum of integrable 
k

N

x
D
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∂ −2
..  and non-integrable 1

..
−N

kD  

components. Then, with the account of Eqs. (2.29) and (2.30) we can write 
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Here k  is a last but one subscript of the defectness field knD ..  of  N-th rank or it is a last subscript of the defectness 

field kD ..  of  (N-1)-st rank. 

The complete field of multi-displacements kD ..  (defectness filed) can be determined from the Eq. (2.31) by 

means of the generalized Chesaro formulae in the form of sum of a continuous component of multi-displacements 

)( 1
..

2
.. −
−

+
∂

∂ N
k

k

N

D
x

D
 and a field of multi-dislocations N

kD ..  (defects of (N-1)-st rank) 

N
k

N
k

k

N

k DD
x

D
D ..

1
..

2
..

.. )( ++
∂

∂
= −

−

 

n
N

nk

M

M

N
k dyDD

x

....
0

∫= . 

That leads to the formal definition of the  “inconsistencies” tensor of a last but one level  N
qT ..  of   

(N-1)-st rank 
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The law of birth and disappearance of sources of defects of the last but one level takes the following form: 
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In result 
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Here kkT ..  is a tensor of (N-1)-nd rank, since it is formed by the convolution in last two indexes of the corresponding 

tensor of N-th rank, compare with the Saint-Venant media case. Tensor kkT ..  defines the sources of defects of (N-1)-

nd rank. After N  iterations of this algorithm we will arrive to the field of milti-displacements of the zero rank, i.e., to 

the scalar field D . That will be the natural conclusion of the algorithm.  

Note in conclusion that the above-described algorithm can be considered as a realisation of the mathematical 

induction in the construction of the geometrical theory of defects of N-th rank. 

 

2.5. CLASSIFICATION OF THE FIELDS OF DEFECTS 

The above introduced algorithm of the kinematic analysis of the fields of defects allows us to introduce the 

following general classification of kinematic models for continuum media with defects. This classification is in a good 

agreement with the available experimental data. 

 

1. The facts of generation and healing of defects of up to the second level have been validated, namely: 

• zero level defects with the tensor of “inconsistencies” iiT ω2−=  (turbulence as a defect of the potential 

state of the continuous medium); 

• first level defects with the tensor of “inconsistencies” ijijT Ξ=  (dislocations); and 

• second level defects with the tensor of “inconsistencies” ijkijkT Ω=  (generalized disclinations – “classical” 

disclinations, cavitation, twinning). 

Indeed, turbulence is a well studied phenomenon. And the defects of dislocations and disclinations are well 

established experimentally. In the present paper we have offered the explanation for the processes of generation and 

healing of defects. And we established the interrelation between these processes.   

2.  After we established that the processes of generation and healing of disclinations take place, in accordance with the 

present study we should acknowledge the existence of defects of third level with the conserved tensor of 

“inconsistencies” ijnmijnmT Θ= . And therefore it is necessary to take them into account. Otherwise the generalized 

disclinations could not be born or disappear.  

3.  The model of continuous media of N-th level with defects has the following kinematic structure:  

• The defectness fields up to the N -th rank inclusive are determined as follows:  
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where all the expressions in brackets represent the continuous parts of fields. 

• The discontinuous fields of defects are defined by the following equalities: 
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In development of the mathematical models of continuous media with defects the above continuous fields 
0D , 1

iD , 2
ijD , 3

ijkD , 4
ijksD , … , as well as their derivatives can serve as the  arguments of the corresponding 

functionals or the corresponding variational equations. 

•  The sources of defects of N-th rank satisfy Eqs. (2.28), (2.32). In particular, if we assume that the defects of 

fourth rank are conserved then the sources of defects (tensor of “inconsistencies”) will satisfy the following 

relations: 
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4. The above-introduced classification indicates on the following connection between the processes of birth and 

disappearance of defects of different levels: 
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One of major properties of defects in the general hierarchy is that the defects of N-th rank are the only possible 

sources or discharges for the defects of (N+1)-st rank. 

 

2.6.  CONCLUSIONS 

It is shown in the present paper that the defects of all known types can be described in the framework of the 

presently developed theory (or classification) of defects.  

1. Within this unified classification the models of continuous media that allow presence of potential of displacements 

are interpreted as models of continuous media free of defects (the Cauchy continuous media). The defects of zero 

rank are the discontinuities (jumps) in the potential of displacements. The source of defects of zero level is the 

vector of curls (the tensor of first rank).  

2.  In the framework of the introduced unified classification of defects dislocations are defects of the first rank (the 

Papkovich-Cosserat continuous media). These media allow a two-level system of defects, the scalar defects 
21, DD  and the dislocations 2

iD . And in this case the dislocations are the conserved defects, i.e. they cannot be 

born or disappear. The source of dislocations is a tensor of second rank.  

3.  It is shown that the second level models (the Saint-Venant continuous media) have a complex structure. They 

incorporate three types of defects. The source of defects in this case is a tensor of a third rank. The following 

structure of defects of the second level is established: 
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• Disclinations can be attributed to the classical defects. The source of disclinations is the scew-symmetric part of 

tensor of a third rank )( kijkji TT −  - the anti-symmetric tensor in first two indexes i, j. The disclinations are 

defects related to discontinuities (jumps) in the field of curls; 

• Classification allows to predict the existence of two other types of defects in the continuous media of the second 

level. Their sources are determined through the symmetrical part of tensor of a third rank )( kijkji TT +  - the 

symmetric tensor in first two indexes i, j. First of them describes the discontinuities (jumps) in the change of 

volume, it is defined as a vector of “cavitation” jkkT . Second type of these new defects of second rank describes 

the discontinuities (jumps) in the components of deviatoric part of strain tensor. The source of defects of a 

second type is a tensor of a third rank. It is defined as a tensor of “twinning”, ijkqqkijkji TTT δ
3
1

2
1

2
1

−+ . 

 We called the defects of second level as the generalized disclinations. 

4. The possibility of existence of defects of higher than second level is established. The necessity of existence of 

defects of third level is defined by the condition of generation of defects of the second level. The source of these 

defects is a tensor of forth rank, and they have a complex hierarchy within the their own class.  

5. The classification of defects is generalized for the defects of any finite level. It is shown that the existence of defects 

of N-th level is necessarily determined by a possibility of generation of defects of (N-1)-st level. 

6. The introduced classification allows to desribe the set of arguments of a functional in  developing the mathematical 

continuous media models of a various complexity by means of the variational method: 

• In mathematical formulation of the Cauchy continuum media model the main kinematic variables in defining the 

Lagrangian of this model are the sufficient times differentiable fields 0D  and 1
iD . 

• In mathematical formulation of the Papkovich-Cosserat continuum media models the main kinematic variables 

in defining the Lagrangian of these models are 0D , 1
iD , 2

ijD . The set of the Papkovich-Cosserat media are 

described in the general case by thirteen degrees of freedom, i.e., by the continuous fields )( 1
0

0
i

i
i D

x
Dr +
∂
∂

= , 

2
ijD , or otherwise Ξ

kω , Ξθ , and Ξ
ijγ . The set of the Papkovich-Cosserat media contains in itself the sub-sets of 

the “classical” Cosserat media with six degrees of freedom 0
ir , Ξ

kω , as well as the media with “porosity” with 

only four degrees of freedom 0
ir , Ξθ , and the media with “twinning” with eight degrees of freedom 0

ir , Ξ
ijγ , 

and finally the classical (Cauchy) media with three degrees of freedom 0
ir . 

• In mathematical formulation of the Saint-Venant continuous media models it is necessary to keep in mind that in 

the general case these models are described by forty degrees of freedom, 0D , 1
iD , 2

ijD , 3
ijkD . Without account 

of the scalar defects, these media models allow a two-level system of defects. The first level of defects 

corresponds to dislocations that may be conserved, as well as they may be borne or disappear. The second level 
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of defects corresponds to the conservable disclinations, cavitation and twinning. The set of Saint-Venant’s 

continuous media contains in itself the sub-sets of the Papkovich-Cosserat media with twelve degrees of freedom 
0

ir , Ξ
kω , Ξθ , Ξ

ijγ , as well as the classical (Cauchy) media with three degrees of freedom 0
ir .  

6. The choice of certain type of kinematic structure of the continuous medium with defects is determined by a 
requirement to describe certain physical properties of medium under study. For example, the models 
constructed on the basis of the Cauchy media principally cannot be used for developing a theory of fine 
dispersed composite materials. Indeed, the fine dispersed inclusions can be treated as dislocations in the parent 
phase or in the matrix. The same is true for the poorly degased matrix. In this case the gas bubbles can be 
treated as vacancies. Such dislocations cannot be born or disappear. Therefore the theory of fine dispersed 
composite materials can be developed only on the basis of the model of continuum media with defects of the 
first level with conserved dislocations. If the phase transitions take place in the continuous medium then they 
can be connected with the birth of defects – dislocations in the parent phase. It is wrong to attempt to develop 
such a medium model on the basis of the Papkovich-Cosserat continuous media. As a minimum, the required 
model in such case will be the Saint-Venant continuous media model with the generatable dislocations and 
conserved disclinations.  

 

2.7. FORMULATION OF THE MODEL FOR CONTINUUMS WITH AN ADDITIONAL KINEMATICS 

DEGREE OF FREEDOM. (SIMULATION OF COMPOSITES AS A HETEROGENEOUS CONTINUUM 

WITH A FIELD OF DEFECTS (FILLERS).   

 

The correct medium models with the microstructure (by the Mindlin’s definition) investigated in this part of work. 
These mediums are defined by both the restricted and free deformations and generalize the known models of Mindlin, 
Cosserat and Aero-Kuvshinsky. Correctness of the model formulating is established by using the kinematical 
variational principle based on consecutive formal description of the mediums kinematics, formulating of the 
kinematical connections for the mediums with different complexity and composition of corresponding strain energy 
with using the Lagrangian coefficients procedure. The set of constitutive equations is determined and the 
corresponding boundary problem statement is formulated. It’s demonstrated, that concerned medium models are not 
only model the scale effects, but also are the base for description of rather wide spectrum of the adhesion interactions. 
In this work the principal attention is focused on analysis of the physical part of the model. For the first time the 
interpretation of all the physical characteristics is given, which are described the non-classical effects, as well as 
description of adhesion mechanical parameters is given. 
In the works [Lurie S.A.,  Belov P.A., 2003,]  the classification of medium models with different defect fields was 
suggested.  The medium model concerned in this part of work according to offered classification is the model with 
conserved dislocations [Lurie S.A.,  Belov P.A.,. 2003]. Applied variants of this model permitted to explain a number 
of known non-classical effects in mechanics of materials. So in [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova 
N, 2003; Lurie S., Belov P., Tuchkova N, 2004.]  it’s shown, that they successfully model the effect changing of 
mechanical properties of nanocomposites  associated with changing of the sizes of the reinforcing elements under the 
constant volume concentration. In [Lurie S, Belov P, 2000, Bodunov A, Belov P, Lurie S,2002; Lurie S, Belov P, 
Volkov-Bogorodsky D, 2002] there are the scale effects modeled in thin films,  mechanics of materials, connected with 
cohesion interactions, the description of the non-singular cracks with zero opening angle is given. This case actually 
determines a formal mathematical substantiation of the Barenblatt’s hypothesis about existence of the cohesion field.  
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In this work there the general variant of mediums with conserved dislocations is developing. These case generalizes 
known models of Mindlin R.D., Tiersten H.F., 1962, Tupin R.A., 1964, Cosserat E., Cosserat F., 1909., an and etc.]  
The variational formulation of models on base of “kinematical” variational principle is used. The kinematical 
variational principle is stated in [Obrzcov I.F. Lurie S.A., Belov P.A.1997,  Lurie S. Belov P.,  2000.P.1 Lurie S.A. 
Obraztsov I.F. end etc. , 2000;  Lurie S, Belov P, Volkov-Bogorodsky D, 2002]. 

It’s shown that the spectrum of the internal interactions is completely determined by a system of the kinematical 
connections, which are realized in the medium. Therefore, on the stage of the model composition the kinematical 
restrictions of the medium model are investigated at first. These restrictions s make possible to formulate of the 
kinematical connections in the context of the principle of virtual displacements. We’ll emphasize, for example, that in 
the framework of classical theory of elasticity the kinematics is completely determined by the symmetrical Cauchy’s 
correlations. In the moment medium models with the constrained torsion the kinematics is set by the totality of the 
Cauchy’s correlations and expressions which are determine the derivatives of a vector of the rotational displacements 
(crookedness) with vector of displacements [Lurie S, Belov P, Volkov-Bogorodsky D, 2002; Mindlin R.D., Tiersten 
H.F., 1962; Lurie S, Belov P, 2000] and so on. At the second stage a list of arguments of the strain energy (for the 
reversible processes) and Lagrangian [Lurie S, Belov P, 2000] is established. The general form of the constitutive 
equations corresponding to the general form of strain energy is presented and analyzed. It lets to incorporate some 
simplifications, connected with an account of known experimental data’s. As a result the variational formulating of the 
boundary problem is determined. At that the whole spectrum of the concordant boundary conditions is established. 

 

2.7.1. The kinematical model.  We’ll write down the known correlations for the displacement vector iR , which are 

founded from the asymmetrical Cauchy’s correlations through the formal integration:  
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M
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Here inγ  -tensor strain deviator,θ  -cubic strain, kω -vector of elastic rotation (pseudovector).   

We’ll start the description of kinematical models of the non-classical mediums from the analysis of the 
Papkovich’s homogeneous equations which are the existent conditions of the curvilinear integral in the determination 
of the displacement vector (1.1.): 
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The Papkovich’s homogeneous equations (1.2.) are able to be interpreted as an existent condition of the vector 

potential (2.33) iR . Consequently, on applying (2.34) the displacement vector iR  is the vector potential for the 

distortion tensor 0
ijd : 
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We’ll draw attention, that differential form jiji dxddR 0=  is a total differential.  

Now let’s consider the Papkovich’s inhomogeneous equations: 
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Here the quantity ijΞ  determines an incompatibility of displacements. Let’s emphasize that in (2.36) ijΞ  - is 

second-rank pseudotensor, so as its sign changes when replacing the right-hand triple of orts to the left-hand one. In 

this case one can formally incorporate the displacement vector as a difference of the two infinitely near point’s 

displacements using an expression jiji dxddD = . But there, however, the linear differential form idD  already is not 

the total differential and the presented equation for the displacements iD  is nonintegrable. 

We’ll assert that a displacement field of defects is determined by the vector iD . The continuous tensor of the 

"incompatibilities" of displacements ijΞ  is being a tensor of dislocations [De Wit R.,  1960.] and obey the differential 

conservation law: 
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The solution of the Papkovich’s inhomogeneous equations (2.36) one can represent as a sum of solution of the 

Papkovich’s homogeneous equation 0
ijd  and partial solution of Papkovich’s inhomogeneous equations Ξ

ijd : 

Ξ
ijijij ddd += 0  

The solution of the Papkovich’s homogeneous equation (2.34) one can write down through the dislocations in form of 

asymmetric Cauchy’s correlations: 
j

i
ij x

R
d
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=0 . Let’s present the asymmetric tensor 0
ijd  as decomposition on tensor 

deviator 0
ijγ , spherical tensor ijδθ 0  and antisymmetric tensor - ijkkЭ0ω . In one’s turn we’ll represent the antisymmetric 

tensor as the pseudovector of rotation 0
kω : 
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For the partial solution of the Papkovich’s inhomogeneous equation (2.36) there is no continuous vector potential, i.e. it 

can’t be presented in the form of (2.35). One can only write for it the following symmetrized representation: 

inkkininij Эd ΞΞΞΞ ωδθγ −+=
3
1

 

It’s obvious, that along with Ξ
ijd  one can concern the values Ξ

ijγ , Ξ
kω  and Ξθ as the generalized displacements. General 

solution of the Papkovich’s inhomogeneous equation (2.36) can be written down in the symmetrized form: 
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Using the terminology of the Cosserat medium kinematics, we shall term the ijk
j

i
k Э

x
R
∂
∂

−=
2
10ω  as a constrained 

rotation, and Ξ
kω  - a free rotation or spin. In a similar we’ll term the 0

ijγ , and 0θ  - as the constrained deformations, and 

Ξ
ijγ , and Ξθ  - as the free deformations . Consequently, let’s coin the definitions of the tensors of free Ξ

ijd and 

constrained 0
ijd  distortion. The kinematics of the mediums with the defects of dislocation type is described by the 

generalized Papkovich’s correlations (2.36) and Cauchy’s correlations for the constrained distortion (2.37). We shall 

name such medium models as Papkovich’s mediums or the first rank defect mediums. The kinematics of such mediums 

has the following structure: 

1. The defect displacement field  iD  is representing the superposition of two fields – a continuous field ii RD ≡1  

(of displacements iR ) and the displacement discontinuity fields 2
iD  (of dislocations): 

2. The displacement discontinuity fields 2
iD  (dislocation) is integrally expressed through the fields of free 

deformations and spins with using a formulas, which are similar to Cesaro’s formulas: 
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However, in against the Cesaro’s formulas, the integrand isn’t satisfying the integrability conditions, i.e. the curvilinear 

integral depends on an integration trajectory, it means, that the vector field 2
iD  is not being continuous. At that one can 

determine three sorts of dislocations ( γ)( 2
iD , θ)( 2

iD , ω)( 2
iD ): 

ωθγ

ΞΞΞΞΞΞ ωθγωδθγ

)()()(

)()
3
1()()

3
1(

222

2

0000

iii

jijkk

M

M
i

M

M
jij

M

M
jijkkijij

M

M
i

DDD

dyЭdydydyЭD
xxxx

++=

=−++=−+= ∫∫∫∫  (2.39) 

3. There are the Cauchy’s correlations hold true, generalized on the defect mediums with dislocations, which are 
named the first rank mediums:  
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4. The displacement incompatibility tensor ijΞ  is the tensor of dislocations [De Wit R., 1970] :  
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At that one can determine tree types of dislocation tensor, which are connected consequently with Ξ
ijγ , Ξ

kω  and Ξθ : 
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The quantities θγ ΞΞ )(,)( ijij   and  ωΞ )( ij  in decomposition (2.40) are being the sources of consequently three 

types of dislocations: γ - dislocations, θ - dislocations и ω - dislocations. 

5. The differential conservation law of dislocation takes place. It is following from the definition of the dislocation 

tensor: 

0=
∂
Ξ∂

j

ij

x
 

6. The integral analogue of conservation deformation law obviously, has the following presentation: 

0=Ξ=
∂

Ξ∂
∫∫∫∫∫ dFndV

x jij
j

ij  

Le us notice, that as a measure of injury (dislocations) one can choose a tensor flux  ijΞ  through a plane in which the 

chosen flat contour lies. 

dFndFn ijjjij
F

Ξ=Ξ ∫∫∫∫
0

 

Here F - is an arbitrary surface, spanned on the flat contour. In other words, the tensor flux ijΞ  through any surface, 

spanned on the chosen flat contour is the same.  

From the adduced analysis follows, that the concept of defect of the continuum is complex and can be determined with 

using a complex of tensor objects. For the dislocations such complexes of objects are: 

- pseudotensor of incompatibilities ijΞ ,  

- the second rank tensor of free distortion Ξ
ijd ,  

- vector (first rank tensor ) of the discontinued dislocations 2
iD .  

It is possible to refer here corresponding Burgers’s vector which can be received from (2.39) by combining an initial 

0M  and endpoint xM  of a flat trajectory of integration ( nn  - is a constant normal vector to a plane of the integration 

trajectory): 
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where js  -is an unit vector, being tangent to a flat contour, nn - the vector of the unit normal to a plane of a trajectory, 

and the vectors nmj nvs ,,  form the three orts, connected with the current point of a contour. 

Kinematical analysis of the model allows establishing the total set of generalized coordinates and velocities, 

being necessary for formulating of functional and concordant variational medium model equation. In a considered case, 

for the Papkovich’s medium with system of conserved defects - dislocations the generalized coordinates are the 

continuous quantities iR Ξ
ijd , and it is necessary to consider corresponding tensor quantities 0

ijd ijΞ  as a "velocities". 

  We shall note also, that as a result of the made kinematical analysis, in essence, a new natural classification of 

dislocations, is offered. In work [De Wit R., 1970] the classification of dislocations based on invariant determination of 

glide dislocations dssdvvb jijiii
Ξ∫= , dssdnnb jijiii

Ξ∫=  and separation dislocations dssdssb jijiii
Ξ∫= , as 

corresponding projections of Burgers’s vector has been offered. Let's note, that such classification does not describe 

power independence of the allocated types of dislocations. We offer other classification which eliminates this lack. We 

shall write down expression for the Burgers’s vector: 
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Consequently, according to offered classification we’ll term −γ as the dislocations the of quantities jij sΞγ ; −θ  the 

dislocations of quantity isΞθ   and accordingly −ω the dislocations of the jijkk sЭΞω . In future it will be shown, that 

the potential free distortion energy ΞΞ
ijij γγμ 22 , scope change ΞΞ+ θθλμ

6
)32( 2222

 and torsion ΞΞ
kk ωωχ 22  haven’t 

cross terms. That’s why the potential energies of coined types of dislocations are additive, they can exist being separate 

and independent from the other sorts of dislocations. 

 

2.7.2. A variational formulating of model.  

In the works [Obrzcov I.F. Lurie S.A., Belov P.A.1997,  Lurie S. Belov P.,  2000.P.1 Lurie S.A. Obraztsov I.F. end etc. 
, 2000;  Lurie S, Belov P, Volkov-Bogorodsky D, 2002] the kinematical variational method of modeling is formulated. 
In concordance with it the kinematical connections of the medium are determinated, the virtual action of internal forces 
is postulated as a virtual action of reaction force factors on the kinematical connections peculiar to the medium. This 
action is presented as a linear form of variations of its arguments. This form can be integrated for the conservative 
mediums. As a result the strain energy is determinated. For the linear mediums the strain energy is being the quadratic 
form of one’s arguments. 
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For the mediums with conserved dislocations such kinematical connections are the Papkovich’s inhomogeneous 
equations in use to free distortion, and Papkovich’s homogeneous equations for the constrained distortion. The last 
ones can be integrated in the general form. The Cauchy’s asymmetrical correlations are the solution of the Papkovich’s 
homogeneous equations for the constrained distortion. Thus, according to the kinematical variational principle the 
virtual action of the internal forces one should present in the following form: 
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Here Uδ  - the virtual action which in general representation is the linear form of its argument’s variations and is 

optional integrated (for the mediums with dissipation see [Lurie S., Belov P. 2001]; ijσ  and ijm  - are a tensors of a 

Lagrange multipliers, which in physical meaning are the reaction force factors, providing a fulfillment of  the 

respective kinematical connections. 

Let’s present Uδ  in (2.41) as the linear form of one’s argument’s variations. Using the integration by parts we’ll get 

the following expression in the items, including the derivatives: 
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We’ll content oneself with considering the mediums without the dissipation of energy.  Then such potential U exists, 

(potential energy), that the virtual action Uδ  in (2.42) is being the variation of this potential: 

UU δδ = , dFUdVUU FV ∫∫∫∫∫ += , );;;( 0
iijijijVV RddUU ΞΞ= ,  );( iijFF RdUU Ξ= . 

In future it will be demonstrated, that for the considered generalized medium model with scale effects be not conflicted 

in the particular case with classical theory and known experimental data’s, the displacement vector must be lacking in 

the lists of arguments for the density of strain energy. Hence, we offer: 

dFUdVUU FV ∫∫∫∫∫ += , );;( 0
ijijijVV ddUU ΞΞ= ,  )( Ξ

ijFF dUU =    (2.43) 

Taking into account the list of arguments in (2.43) and evaluate the variation Uδ  in the volume, we’ll obviously 

obtain: 

,,,0 ΞΞ
σ

ij

V
nmj

m

ij
in

ij

V
ij

ij

V
ij d

UЭ
x
m

pUm
d
U

∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=  Ξ
Ξ =

∂
∂

= nmijnm
ij

F
ij dA

d
UM   (2.44) 

One should interpret the formulas (2.44) as a generalized Green’s formulas for the volume and surface force factors. 

These correlations make possible to express the Lagrangian and find the respective Euler’s equations: 
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2.7.3. Constitutive Equations. Physical interpretation of the generalized elastic constants. 

 Let’s consider again the densities of potential energy in the volume and on the surface. Contenting oneself with 

considering of physically liner mediums. Then VU  is determinated as the quadratic form of one’s arguments: 

nmijijnmnmijijnmnmijijnmnmijijnm
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ΞΞ+++=

=Ξ=
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Ξ

33220120011
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2

);;;(22
     (2.46) 

When finding (2.46) the following quite substantiated simplifications were incorporated: 

1.  A coefficient in the quadratic item at the displacements jiij RRC  is offered to be equal to zero in the quadratic 

form for the density of potential energy. Otherwise an operator of equilibrium equations would have 

presentation of Helmholtz equations that excludes the existence of homogeneous modes of deformation. 

2. The coefficients at all the rest bilinear components, which includes the displacement vector are also assumed 

zero. Otherwise, when the quadratic in displacements items jiij RRC are lacking, the cubic density of the strain 

energy wouldn’t be positive defined. 

The structure of the Young modulus tensors pq
ijnmС  in (2.46) is determined by theirs decomposition on isotropic 4th rank 

tensors, constructed as a multiplication of a pair of Kronekker tensors with all the possible index permutations: 
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To interpret physically founded structures of the modulus tensors, we’ll consider the corresponding parts of potential 

energies. Let’s take a look at the cubic density of the strain energy 0011
nmijijnm ddC , connected with the tensor of 

constrained distortion invariants
j

i
ij x

R
d

∂
∂

=0 . Let’s represent every kinematical factor being the second rank tensor 

(pseudotensor for the dislocations) as the tensor decomposition on the deviator, spherical and antisymmetric parts: 
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where ijkkij Э00 ωω −=  

Then, taking into account (2.48) we’ll find: 
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The first item in (2.49) determines the distortion energy 
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+ , therefore we’ll term the corresponding 

multipliers as a shear modulus for the constrained distortion. 
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The reasoning are completely similar for the rest items presenting in the cubic density of potential energy expression 
Ξ
nmijijnm ddC 0122 , ΞΞ

nmijijnm ddC 22 , nmijijnmC ΞΞ33 . It is obvious that the analogues of the shear modulus pqμ  for the deviators 

of all corresponding kinematical factors are embedded similarly: 

 pqpqpq CC μ2)( 32 =+                                                                                   (2.50) 

The second item in (2.49) determines a potential energy of the volume change 
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we’ll term the corresponding multipliers as the cubic impaction modulus for the constrained distortion. In the same 

way the cubic impaction modules pqpq λμ 32 +  are embedded for the spherical tensors of all the rest kinematical 

factors: 
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determines the asymmetry in a stress tensor and has no classical analogues. Therefore we’ll term the corresponding 

multipliers as third Lame coefficient for the constrained distortion ( 0
ijd ). In the same way the analogues of the third 

Lame coefficient pqχ  for the corresponding invariants of other kinematical factors are embedded. 

pqpqpq CC χ2)( 32 =−           (2.52) 

Solving the equations set (2.50)-(2.52) in regard to coefficients 3,2,1, =jC pq
j  and taking into account 

(2.42), we’ll get:     
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We can finally write down the following expression for the density of the potential energy VU : 
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 Let's note that a part of the density of the potential energy, which is connected with the dislocation tensor, 

nmijijnmC ΞΞ33  determines rapidly changeable local part of the potential energy of dislocations. The remaining part of 

strain energy’s density is slow variable and can be founded as the sum of potential energies of three types of 

dislocations:  γ - dislocations, θ - dislocations and ω - dislocations.  Hence, the slow variable part of the strain energy 

doesn’t contain any cross term from the stated types of dislocations and being the additive form relative to free 

distortion components. Let’s note that it is the integral characteristics that are used to estimate the damage of mediums. 
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That’s why in such problems, probably, one can neglect local rapidly variable part of energy for the rough estimate. At 

that the additivity really takes place in the density of the potential energy decomposition in relation to free distortion 

components. 

In the general case the cubic density of the potential energy contains no cross terms corresponding to free 

distortion ( Ξγ nm ), volume change ( Ξθ ) and torsion Ξω k  at small-scale values of the constants 33
ijnmC , corresponding to 

the scale effects (theirs dimension differs from the Young modulus into square of length).   This circumstance has been 

used as a substantiation of the correctness in relation to new classification of different types of dislocations.   

We’ll present the generalized Hooke's equations (2.44) for the volume force factors in the following form: 
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Let’s emphasize that generalized impulses ijσ , ijp , ijm   in (2.53) are not only depending on generalized 

velocities
m

n

x
R
∂
∂

, ijΞ , but also on generalized coordinates Ξ
ijd .  In this connection it is possible to give different 

interpretations of the “non-classical” components in generalized Hooke’s law (2.54). In the one hand one can redefine 

the stress tensor, excluding the items in the right parts which are containing the free distortions Ξ
ijd . Then the 

combination )( 1222
ijpqijijpqij pCС −σ  can be determined as the generalized stress tensor. Then the other linear 

independent combination )( 1121
ijpqijijpqij pCС −σ  will have the physical meaning of the generalized Winkler foundation 

on the generalized displacements Ξ
ijd . 

At another interpretation of the constitutive equations one should acknowledge, that along with stress tensor ijσ  in 

such mediums the additional force factors called the ”dislocation ” stresses ijp  take place. This second variant is being 

more traditional and more preferable.  We’ll adduce the following reasons. Let’s consider that 012 =ijnmС . As will be 

shown in future, in this case the general boundary problem disintegrates on boundary problem in relation to 

displacements iR  and on boundary problem in relation to free distortion Ξ
ijd . At that the boundary problem concerning 

to displacements at the additional consideration 011 =χ  (theory of elasticity with the symmetrical stress tensor) 

coincides with the classical theory of elasticity. Then the force factor ijσ  assumes the mean of classical stresses. 

Accordingly the force factor ijp  assumes the mean of Winkler reaction in the couple stress equilibrium equations. At 

012 ≠ijnmС  the mutual perturbance of a classical displacement field and pure dislocation conditions occurs. The cross 

terms of the Hooke’s law equations for the ijσ  and ijp   express these perturbances. The same reasons give the 

algorithm of solving the general boundary problem using the method of successive approximations. 
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In the case of surface density of potential energy the situation is more difficult. For the smooth surface the 

natural preferential direction - surface normal is always exists. The equations of the Hooke’s law for the internal force 

factors on the surface must be transversely isotropic and, as a result the kinematical factors, connected with  the surface 

normal and a tangential plane, will appear in these equations of the Hooke’s law  disparately.  

Let’s analyze the surface density of the strain energy more explicit. We’ll consider the expression of surface 

part of the virtual action. The first item in it is completely accords to the classical presentation. This one appears as a 

result of integration in parts of the expression dV
x
R

j

i
ij )]([

∂
∂

∫∫∫ δσ in the equality (2.41). The second item in the 

expression of surface part of the virtual action (2.42), (2.43) is being non-classical and is indebted to kinematical 

variational principle of the model evolving with its appearance. This item is connected with the surface energy of 

adhesion FU .  Let’s consider this item more explicit: 
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  (2.55) 

Let’ emphasize, that 0=pqjqp Эnn  is like a convolution of the symmetrical tensor qp nn  with the antisymmetric 

pseudotensor pqjЭ . Hence, the action of the couple stresses (2.55) on surface of a body performs not on all nine 

components of the free distortion tensor Ξ
ind , but only on six of them )( mppmim nnd −Ξ δ : 

dFnndЭnmdFdЭnm mppmimpqjqijinnmjmij )( −−=− ∫∫∫∫ δδδ ΞΞ      (2.56) 

In the general case the density of the strain energy (potential energy of adhesion) on the surface of the body has the 

following expression:  

][
2
1 ΞΞ

ijnmijnmF ddAU =           (2.57) 

The generalized equations of the law on surface are set by correlations (2.44). Let’s notice, that the density of 

the potential energy is not depends on dislocation vector. Otherwise, the variational setting would result in systematic 

corrections in the static boundary conditions of the classical solution that conflicts with available experimental data. 

It is important to notice, that correlations (2.56) allow specifying the list of arguments in the density of the 

surface potential energy in (2.57). This specified list of arguments is now determined with six «plain» components of 

the free distortion tensor )( mppmim nnd −Ξ δ : ))(( jkkjikFF nndUU −= δΞ . As a result, the whole correct variational 

setting of the boundary problem (2.45) acquires the following final appearance: 
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This implies, that for the investigated medium model in every ordinary point of the surface here there is nine boundary 

conditions. The analysis of the determinative equations and the boundary problems at all makes possible to 

demonstrate that general order of the determinative equations in relation to components of the displacement vector and 

the potentials for the components of the free distortion is equal to eighteen. Hence, the mathematical setting of the 

investigated model is being concordant, because nine boundary conditions for the boundary problem of eighteenth 

order there are.  

The structure of the adhesion modulus tensor ijnmA  is determined by its decomposition on the fourth rank 

tensors, constructed as all the possible multiplications of pairs of the “plain” Kronekker’s tensors and the tensors, 

founded with using the product of the unit normal vectors of jinn  type, with all the possible permutations of indexes. 

Besides let’s take into account, that the adhesion potential energy must be not dependent on the components of the free 

distortion vector with the last index, coinciding with index of the unit normal to surface vector. Only in this case the 

classical natural boundary conditions for the stresses stay fixed on the surface of a body. This fact doesn’t carry any 

contradiction in a special case when turning to the classical medium model and is being in good agreement with the 

numerous experimental data. 

One can make sure that in such case the general structure of the adhesion modulus tensor has the appearance: 
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Here iA - are some constants. 

Let’s consider the density of the strain energy on the surface and give the physical interpretation of the adhesion 

components of the strain energy, taking into account the correlations (2.56), (2.59). The surface potential energy will 

have the appearance of a quadratic function of only the following components of free distortion - )( kjjkik nnd −δΞ .  

This circumstance is important when developing the concordant theory and will be concerned in future. 

Let’s present the free distortion as the tensor decomposition on the “plain” deviator: 

))((
2
1

))((
2
1))((

2
12

mnnmjiijnm

miimnjjnnmmjjmniinnmij

nnnnd

nnnndnnnnd

−−−

−−−+−−=

Ξ

ΞΞ

δδ

δδδδγ
, 

the “plain” spherical tensor: 

)(2
mnnmnm nnd −= Ξ δθ  

the “plain” antisymmetric  tensor: 
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and the ”plain” vector of angular displacement of the surface at  the one’s bend: 
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imminnmi nnnd −= Ξ δα  



 

 
68

Here the upper index "2" emphasizes the fact of the corresponding free distortion tensor components are evaluated on 

the surface of the body. As a result we’ll get: 

ijijjiijijkjjkik nnnnnd αωδθγδΞ 2222 )(
2
1)( ++−+=−       (2.60) 

Taking into account (2.59), one can certain, that free distortion tensor on the surface, presented as the decomposition 

(2.60) converts to the canonical form: 
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Comparing the first three items in (2.61) with the corresponding items of the cubic potential energy in the plain 

statement, one can draw an analogy between the Lame’s coefficients and the adhesion modules.  

We’ll enter the following natural definitions: 

- a modulus 2A  is an adhesion analogue of the shear modulus FA μ=2 ; 

- a modulus 1A  is an adhesion analogue of the second Lame’s coefficient FA λ=2 ; 

- a modulus 4A  is an adhesion analogue of the third Lame’s coefficient FA χ=4 ; 

- a modulus FA δ=3  is an adhesion analogue of the Winkler rigidity of an "internal substrate" of the surface 

producing the reaction moment proportional to free rotational displacements of the elements of the surface 

centerline (the near-surface layer) in two orthogonal directions.  

Accordingly the first item in the potential energy (2.61) is being the energy of change a “plain volume” – the surface. 

That’s why we’ll term this energy as energy of a surface tension. A theory of the surface tension is rather well known 

beyond the frameworks of the mechanics of continua as the autonomous empirical theory. Thus, one can assert that the 

surface tension is being a particular effect of the evolving theory. 

The second and the third items in (2.61) determine correspondingly the distortion energy and the energy of the 

torsion in the plane being tangent to the surface. In respect to the identification of the adhesion physical constants one 

can realize joint account of the distortion and torsion energies in the frameworks of the test problems modeling a 

friction of two half-spaces with ideally smooth surface of contact. In one’s capacity of the first test problem for which 

only the distortion energy realizes the problem of the pulling of a fiber out from a loaded matrix can be offered. Owing 

to axial symmetry of this problem the surface of the fiber doesn’t feel the torsion deformations. The solution of such 

problem establishes the connection between a static friction coefficient and the adhesion modulus.  In respect to the 

second problem an anti-plain contact problem can be considered. For this problem, apparently along with the torsion 

the distortion of the contact surface is taking place. The solution of the similar problems gives the fundamental 

possibility to realize a corresponding experiments and determine the corresponding adhesion modules FA μ=2  and 

FA χ=4 . 

The fourth item determines the energy of a surface bend, being the energy of deformation of the “internal Winkler 

springs”.  As the test problem here there is a problem of medium’s behavior being under the pressure in the faces of the 

gap between two half-spaces with ideally smooth surface can be applied. The using of the adhesion model here allows 
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to model two effects. The first of them is effect of existence of a medium surface meniscus. The second one is 

connected with an average elongation of the medium in the gap, which is founded with the help of the non-classical 

model and the similar result, founded using the classical solution in respect to the physical phenomenon of capillarity. 

 

2.7.4. The fundamental role of the cross tensor of modules.   

Let’s consider again the constitutive equations (2.44), (2.54) and offer in them 012 =ijnmС . Then we’ll get:  
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It’s easy to see, that in this case the general boundary problem decomposes in two independent boundary problems. 

With account of (2.54), (2.62) we’ll get the separate problem for the displacement vector: 
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The problem of the free distortion tensor is also formulated separately: 
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Hence, the boundary problem it relation to the free distortion vector components in this case is being homogeneous. It 

corresponds to the absence of dislocations. As a result, at 012 =ijnmС  the model is reduced to the model of an intact 

medium. At the same time the heterogeneous subsystem of the equations of force equilibrium (at 011 =χ ) and the 

boundary problem (2.63) as a whole coincides with the boundary problem of the classical theory of elasticity. 

Presented arguments allow giving the following natural interpretations to the modules of 

elasticity 11μ , 11112 λμ + , 11χ :  

-  11μ  is the shear modulus of the medium being not damaged with the γ  - dislocations, G=11μ ;   

- K=+ 1111 32 λμ  is the modulus of cubic pressure of a medium being not damaged with the θ  - dislocations. Here 

the Young modulus is determined by formula: E=+ 11112 λμ ; 

- value 11χ  can be interpreted as a “torsion modulus” of the medium which is being not damaged with  ω  - 

dislocations χχ =11 . 

Let’s further consider equations founded from the variational equation (2.45), (2.58). To find the general 

equilibrium equations expressed in displacements one should set the multipliers at variations of displacements and at 

variations of free distortion tensor components equal to zero. The first equation group we’ll term as the equations of 

force equilibrium.  Correspondingly, the second equation group (second rank tensor equation) we’ll term the moment 

balance equations. The set of generalize equilibrium equations can be presented in the form of kinematical 

variables iR , Ξ
ijd  using the generalized equations of the Hooke’s law (2.54). From this equation set the subsystem of 
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equations is singled out. This subsystem generalizes the equilibrium equations of Lame in classical theory of elasticity 

and expressed through the displacement vector iR :  
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Here the following designations are used: 
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and 
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Where values 1E  and 1G  , obviously, can be treated as modules of elasticity of the damaged  medium; parameters 
2
Gl , 

2
El  are scale characteristics of medium, they have dimension of a square of length.   

Directly from correlations (2.64), (2.65) the following inequalities ensue: 
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Correlations (2.64) - (2.66) are rather important. They specify a fundamental role cross tensor of modules. Moreover, 

the equations (2.64), (2.65) establish exact connection between modules of elasticity of the intact medium: 

)2( 1111 λμ + and )( 1111 χμ +  and modules of elasticity of the damaged medium: 1E  и    1G  

From inequalities (2.66) follows, that the modules of damaged medium are always less than Young modules of the 

intact medium. Equality is possible only when 012 =μ , 12λ =0 ( 012 =ijnmC ) and medium with conserved dislocations 

degenerates in the intact classical medium (at 11χ =0).  
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In summary we shall note the following important circumstance. Dimension of modules 333333 ,, χλμ differs 

from the one of modules 111111 ,, χλμ , 121212 ,, χλμ  and 222222 ,, χλμ  on dimension of a square of length. Thus, the 

account of the contribution of invariants of dislocation pseudotensor ijnmijnmС ΞΞ33  in expression of potential energy 

with inevitability results in scale effects in volume. We shall note, that dimension of adhesive modules also differs 

from volumetric modules on dimension of length. Thus, the account of an adhesive component in expression for 

potential energy results in modeling scale effects on a surface. 

The submitted generalized model of mechanics of continua as a whole is theoretical model in which a surface 

tension, static friction bodies with ideally smooth surface of contact, the meniscus, wettability and capillarity are 

modeled as special effects within the framework of unified continual description. All these special effects are united by 

one signature they are the scale effects in continuums. 

 

2.7.5. Conclusions. 

 In work, on a basis of variational kinematical principle [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  2003; 
Lurie S., Belov P., Tuchkova N. 2004;  Lurie S, Belov P, 2000; Lurie S, Belov P, 1998] the full and correct model of 
mediums with conserved dislocations is given. The special attention is given to the analysis of kinematical correlations 
for at the variational description kinematics of medium completely determines the system of internal interactions in 
volume and on the surface of the considered body. On the basis of the carried out kinematical analysis the new 
classification of the dislocations is offered. This classification allows describe three types of dislocations: γ  - 

dislocations, θ - dislocations, ω dislocations.  
This classification, in the first, gives new kinematical interpretation of dislocations as reflects connection of 

dislocations with distortion-γ , with change of volume θ  (porosity) and with twisting ω  (curls or spins). The offered 
classification actually allows predicting of the special cases of dislocations when in the medium only one or two types 
of dislocations dominate. So, for example, in the medium with the distributed defects the dislocations generated only 
by free rotational displacements Ξ

kω can be dominating. Then as the special case of the general model we receive a 

"classical" variant of Cosserat mediums model where 0=Ξ
ijγ  and 0=Ξθ , and free distortion tensor is determined by 

a correlation ijkkij Эd ΞΞ −= ω . The porous medium also can be considered as a special case of the general model. In the 

porous medium dominate the dislocations generated only by free volume change Ξθ . Then for the porous medium with 

four degrees of freedom iR , Ξθ  we have 0=Ξ
kω  and 0=Ξ

ijγ  and ijijd δθ ΞΞ =
3
1

. At last, medium concerns to special 

models with one dominating type of dislocations with eight degrees of freedom iR Ξ
ijγ  . The dislocations generated 

only by free distortion Ξ
ijγ  here dominate. It is obvious, that thus ΞΞ = ijijd γ . Similarly it is possible to predict presence 

of mediums with two types of dislocations. In works [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  2003; 
Lurie S., Belov P., Tuchkova N.  2004; Lurie S, Belov P, Volkov-Bogorodsky D, 2002], the model of such medium has 
been considered. There the dislocations generated by free distortion Ξ

ijγ  were neglected. On its basis it is constructed a 

continual variant of the theory of interphase interactions [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  2003; 
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Lurie S., Belov P., Tuchkova N., 2004]. This theory has allowed modeling and explaining known scale effects in 
mechanics of fine-dyspersated composites, determined by cohesive and adhesive local interactions. The classification 
offered in the presented work allows to consider also one more special case of mediums, where it is possible to neglect 
either Ξθ  (not porous mediums) or Ξ

kω  (spinless mediums). As far as it is known to authors, such mediums were not 

investigated yet.  
Second, the offered classification is proved and from the physical point of view as shows physical meaning of 

various types of dislocations. So, it is proved, that the specified types of dislocations: γ  - dislocations, θ - dislocations, 
ω - dislocations give corresponding, mutually independent components in the basic, slow variable part of density of 
strain energy. These shares of potential energy have no cross terms. Thus, additivity in decomposition of slow variable 
part of strain energy density concerning three various types of dislocations takes place. Thus, presence of a 
nonclassical, not local component of the potential energy connected to defects - dislocations is rather unexpected for 
gradient models, which is the model of mediums with system of the distributed dislocations.  

Use in the given work of the consecutive variational approach and the detailed analysis of boundary conditions, 
has enabled to formulate the consistent and coordinated boundary problem for mediums with conserved dislocations 
with nine boundary conditions in each nonexceptional point of a surface. It speaks that at the consecutive variational 
formulation of a problem, the coordination of mathematical statement is always achieved. The order of the problem is 
actually determined by amount of independent boundary conditions at variational statement. We shall remind that in 
the most consecutive theory of mediums with Mindlin’s microstructures [Mindlin R.D., Tiersten H.F. 1962], the 
boundary problem contains twelve boundary conditions that do not correspond to the general order of the resolving 
equations. Apparently, it is connected by that in work [Mindlin R.D., Tiersten H.F. 1962], the properties of surface 
density of the potential energy has not been established, corresponding to adhesive interactions and the analysis of 
work of these surface interactions has not been given. 
At last, it is necessary to note, that within the framework of the offered model the spectrum of scale effects in volume 
and on a surface is taken into account. Really, the account of invariants of the dislocation pseudotensor ijnmijnmС ΞΞ33  in 

terms of potential energy with inevitability results in scale effects in volume. On the other hand, the account of energy 
of adhesion in expression of potential energy results in modeling the scale effects on the surface, as dimension of 
tensor A differs from dimension of the Young modules. Apparently, the submitted generalized model of mechanics of 
continua is the first correct theoretical model, in which various special scale effects (cohesion interactions,  a surface 
tension and so forth) in volume and on a surface are modeled within the framework of unified continual description. 
 
2.7.6. Test  problems for definition of the physical constants. Algorithms. 

 (The mechanical effective properties of composites).  

In this section the connection between physical parameters of the model and structural parameters of the 
material  is established on the base of the strict and correct mathematical statement.  
The test problems allowing to define all spectrum of modules of elasticity are established. Thus, formulas for definition 
of characteristics of a researched material both damaged, and the non-damaged mediums are established. In essence, 
algorithms of definition of all spectrum of physical constants for mediums with fields of defects - dislocations (the 
filled composites, porous environments), taking into account scale effects are offered.  
The filled composites are treated as defective mediums in which materials of matrixes and inclusions are defective 
mediums. This fact allows to construct models of the inclusions and a matrix in view of scale effects. Interactions of 
such scale effects for inclusions and matrixes results to spatial structures formation, which are treated as an interphase 
layer. In result, geometrical and mechanical properties of an interphase layer are completely defined (determined) by 
characteristics (classical and non classical) of the contacting phases (Chapter 3). 
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 Limiting cases are become very important when the sizes of inclusions become commensurable with the sizes 

of nuclear structures are represented. Then inclusions can be treated as a dislocations of replacement, and pores and 

nano-cracks as vacancies. In this case characteristics of the mediums with kept defects - dislocations determine the 

effective properties of nano-composites (mediums).  

Let's consider the moment equilibrium equations and moment boundary conditions in a case when adhesion 
can be neglected. Integrating them accordingly on the volume and the surface, we shall receive the following integrated 
equations: 
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Let’s use the Gauss’s theorem.  Then we establish nine integral equations that can be treated  as generalized  
global equilibrium equations for “pure”  moments. 
 0=∫∫∫ dVpij           (2.67) 

We can use the constitutive equations of the model (2.54), (2.62). Substituting their in (2.67) we find: 

0

)(

2221

2221

2221

=+
∂
∂

−=

=+
∂
∂

−=

=+
∂
∂

−=

Ξ

Ξ

Ξ

∫∫∫∫∫∫

∫∫∫∫∫∫

∫∫∫∫∫∫

dVdCdV
x
R

C

dVdCdV
x
R

C

dVdC
x
R

CdVp

nmijnm
m

n
ijnm

nmijnm
m

n
ijnm

nmijnm
m

n
ijnmij

 
By definition, global deformation characteristics of the defectness mediums damaged with kept dislocations 

are the following integrals: 
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Considering equations (2.67)  and (2.68) as system of eighteen algebraic equations, we can write its solution 
respect to required integrals: 
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For presentation we shall divide this tensor system into the equations concerning spherical, deviatorical and 
antisymmetric part separately.   Then for a scalar part we can get: 
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For deviatorical part we can get: 
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 (2.70) 

For antisymmetric part: 
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Accordingly, solutions of these systems look like: 
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For the further reasonings we will use the example of the scalar part. Similar reasonings will give result for 
deviatorical and antisymmetric parts. 

Integral deformational characteristic ∫∫∫ dVdkk  defines   the changing of volume of the mediums damaged by 

the conserved dislocations.  The changing of volume of the mediums damaged is Ξθ .  Then, the following  equation 
takes place: 

VdVdkk Δ=∫∫∫  

here VΔ  is common changing of volume, associated with changing of external  load 
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Then, the solution of (2.72) can be written as: 
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Parameter θf   defines the properties of the mediums due to modulus 22122212 ,,, λλμμ . This parameter does 

not depend from loads and changing’s of externals.  Thus, we can  write: 
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Let’s introduce the treatment for parameter Vfθ  as volume part of the mediums damaged by  θ - dislocations. 

On the other hand  the parameter Vf )1( θ−  can be treat as volume part of the medium, which is not damaged 

by the  θ - dislocations. Then parameter θf , can be treat as volume part of the θ - dislocations. One is connected with 

non-classical physical characteristics by the relation (2.75). 
Similar reasonings enter relative volume fractions and two other types of dislocations. 
Аналогичными рассуждениями вводятся относительные объёмные доли и двух других типов 

дислокаций: 
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Thus, six relations (2.62) - (2.64), and (2.75) - (2.77) between experimentally definable parameters and the 
formal parameters of the mediums entered into the theories of the pseudocontinuum with kept dislocation are 
established.  

Equations (2.75) - (2.77) can form a basis for experimental definition of a part of the nonclassical modules 
which are included in tensor 12C .  As example, θf  can be determined experimentally as the volumetric part of pores or 

inclusions. This value also can be found on the known data of the volumetric part of inclusions. 
Test problems 

Let's consider the moment equations of balance, moment boundary conditions in absence of adhesion and the 
equation of Hooke's law. We shall express free distortion through derivatives from the moments and displacements: 
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With the help of the equations of balance dislocation pressure can be expressed through a rotor of the 

moments. Using Hooke's law, we shall find the following: 
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 Let's take into account the relations: 
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So, according to the (2.74), (2.75) we will receive the following: 
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If 012 =ijpqC , the formulas (2.80) are give the solutions of the test problems for the definition of modules of 

elasticity for the mediums intact with the appropriate dislocations.  
If 012 ≠ijpqC , the formulas (2.80) are give the decisions of the problems for the definition of modules damage 

by the appropriate dispositions: 
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 The relation (2.81) is the tensor equation of the second rank containing 9 linear equations be relative 9 

component of isotropic tensors of "damaged” modules 221211 ,, CCC . Thus, these relations essentially allow to 
determine all modules of dimension of classical modules. From here drop out (by virtue of the equations (2.80) 
modules determining local effects. At integrated estimations (2.81) local characteristics can not be determined. Except 
for the modules determining global characteristics is of two groups of modules, determining scale effects - local 
characteristics. They should be defined from local test problems. The dislocation volumetric characteristics which are 
included in the tensor С33 can be determined by a direct method under characteristics of the mechanics of destruction 
(see Report 4, Annual Report, first year) or, by the indirect route under characteristics of interphase layers (under 
integrated characteristics of composites (Report 8, Annual Report, second year)). The second group of the modules 
determining local characteristics is adhesive modules. These characteristics can be defined, for example with use of 
effects of a superficial tension, a meniscus and capillarity (for liquid phases), and also with use of experiments with 
friction of rest.  
 
2.8. THE KLAPEIRON’S THEOREM 
 
The Klapeiron’s Theorem is the fundamental theorem of any model of the solid medium. This theorem allows to link  
the potential energy and the work of the external forces in accurate solution of the appropriate boundary-value 
problem.   
 
2.8.1. The Klapeiron’s Theorem for one body with active surface 
 
Let’s show that the Klapeiron’s Theorem take place for the generalized model of the medium with the Lagrangian: 
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For this purpose we shall calculate the value of the Lagrangian in the stationary point (if the all equations and 
boundary conditions were satisfied) in view of the physical relations (2.53),(2.63). The following sequence of 
equality takes place: 
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From here we receive the following formulation of the Klapeiron’s theorem for a body with an active surface: 
"Potential energy of a body with an active surface is equal to half of work of external forces ": 

FV UUA +=
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Let's note, that in spite of  a "classical" kind of this theorem, the structure and the contents of potential energy have 
completely other contents. First, the volumetric part of potential energy contains nonclassical composed, dependent on 
components the tensor of free distortion and the tensor dispositions: 
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Second, the "classical" member in a volumetric part of potential energy it is calculated on displacements which satisfy 
with other, than classical, to the equations of balance. 
Thirdly, the potential energy as a additional item contains superficial potential energy. This part of potential energy is 
not equal to zero for an adhesion-active surface. 
 
2.8.2 Dupre’s equation 

Let adhesive interaction between two bodies take place. Dupre’s equation defines the connection between work 
of external forces on system of two bodies with adhesive interaction contact, the potential energies these bodies and the 
energy of their adhesive interaction. Thus, Dupre’s equation is the mathematical formulation of Klapeyron's theorem 
for this system of bodies.   

On a free surface from kinematic connections the kinematic variables in nonclassical boundary conditions are 
any. Possible work of resulting force factors on the appropriate kinematic variables on a surface transform to zero then 
when all appropriate force multipliers become to zero. For brevity we shall enter true tensor of moment pressure of the 
third rank through pseudotensor of moment pressure of the second rank: 
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Thus nonclassical boundary conditions get the following kind: 
0=+ Ξ
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Let’s define the tensor of adhesive flexibility −
pqijA , as the solution of the following linear algebraic system: 

)( mqqmpnijnmpqij nnAA −=− δδ  

Solving this system, we shall receive expression for components tensor of adhesive flexibility through adhesive 
modules. 
 
Clapeyron's theorem for a compound body with active surfaces. 
Lagrangian for this body has the following kind. 
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where upper indexes ( )1()( ,1
i

V
i RP  , )1()( ,1

i
F

i RP  and so on) show  the attributes of contacting bodies. 

In the last equation it is taken into account, that on a surface of contact C  free distortions of first and second body are 
equal: 

nmnmnm ddd == )2()1( .  

Let kinematic variables of the first and second body satisfy to the appropriate equations of balance and boundary 
conditions then it is possible to write down: 
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Let's transform last two parts of energy equation in a volumetric part: 
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Similar calculations can be made and for the second body. In view of the received results it is possible to write: 
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If for each body nonclassical boundary conditions on free from contact of a part of a surface of both bodies are satisfied 
then last items in braces are equal to zero. Accordingly, the second items will give half of work of external superficial 
forces if classical boundary conditions on that part of a surface which does not participate in adhesive interaction of 
bodies are satisfied. Then the expression for Lagrangian becomes simpler and takes the form: 
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In view of that mmm nnn =−= 21 , that if on a surface of contact C  kinematic and static variables of the first and 

second body satisfy to conditions of contact precisely, last four composed are mutually destroyed.  In result stationary 
value of Lagrangian is received: 
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Thus, Klapeyron's theorem for composed bodies is proved: “The stationary value of  Lagrangian of system of  two 
bodies with adhesion interaction is equal half of work of external forces enclosed to this system” 

With the help of this theorem possible to prove the «Dupre’s theorem». For this purpose it is necessary to substitute 
in expression of Lagrangian of systems its stationary value: 
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Here )1(U and )2(U  potential energy of interative bodies.  
It is possible to write down the following equality 

122
0

1
0

21 UUUUU −+=+ , 
12U  - is the energy of adhesion interaction of contacting bodies,  2

0
1

0 , UU  - are the potential energies of isolated 

bodies. 

The values 12U , 2
0

1
0 , UU , 21 , AA  can be calculated on the basis of the solution of the appropriate boundary 

problems and can be written  through parameters of the  model. 
Proved «Dupre’s theorem» can help to define in the direct experimental way the energy of adhesive interaction of 

the bodies on the basis of Young’s equation. We shall remind, that Young’s equation connects an angle of a meniscus 
(experimentally measured parameter) to superficial energy of interaction. 

 
2.9. ASYMPTOTIC INTEGRATION OF THE BOUNDARY PROBLEM. 

The asymptotic consideration of the boundary problem is rather perspective tool of the approached decomposition the 

common boundary problem on a classical boundary problem and some amendment to it, connected with defectiveness 

of medium. 

 The “kinematic” variation principle and analysis of the kinematic structure of the theory of the medium with 

kept dislocations have resulted in the following boundary problem: 
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Thus the generalized equations of Hook’s law take place: 
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where the tensors of the modules of  elasticity in volume of a body are determined by equality: 
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and the tensor of the modules of adhesion on the body surface give the following general view: 
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Let's remind, that on the basis of results of the previous unit (Section 2.7 of the present Report) at 012 =ijnmС  the 

decision of a regional problem becomes: 

0,0 == Ξ
ijii dRR  

Let's enter into consideration some norms of the tensor modules: 11
ijnmС , 12

ijnmС  and 22
ijnmС . If the ratio of the norms 

of the tensors 11
ijnmС  and 22

ijnmС  is about “one”, and the ratio δ=
11

12

ijnm

ijnm

С

С
 is small, then this parameter δ  can be used 

in the construction of the asymptotic decomposition. 
 
The parameter δ  we will name small parameter of the defectness. 
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Let’s give the determination of the geometry size of the body l  as the specific relative fraction of superficial 

F
Vl =  

Let's define also small parameter of multiscale-effects ε  with the help of a ratio: 
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Accordingly, we shall enter definition for small parameter of adhesive effects a : 
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If 012 ≠ijnmС , we will find the decision in the following form: 
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In result, the common boundary problem is breaks up into the two independent boundary problems:  the boundary 

problem for the vector of displacement, which will define the basic asymptotic process and the boundary problem for 

the tensor of the free distortion, which will define the auxiliary asymptotic process. 

The basic asymptotic process 
This case is take place when the asymptotic process is determined by the small parameter of the defectness δ . 
Let's give definition of the normalized loadings F
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Then the variational equation can be resulted in a kind: 
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The auxiliary asymptotic process 

In auxiliary iteration process there are two additional small parameters: parameter of multyscale-effects ε  and 

parameter of adhesive effects a . We shall define with their help of the normalized tensors of modules of adhesion 

ijnmA and modules of dislocation 33
ijnmC . 

The definition of the normalized tensors of modules of adhesion ijnmA : 
ijnm

ijnm
ijnm A

A
A =  

 

The definition of the normalized tensors of modules of dislocation 33
ijnmC : 

33
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ijnm
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C
C =  

In view of the entered definitions we have the following equation 
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Case, when small parameters of one order, i.e. δε ~  and δ~a  

Then, auxiliary iterative process (2.85) can be formulated as: 
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If thus δε ≤  and δ≤a auxiliary process degenerates in algebraic connection between components free and 

constrained distortion. 

Otherwise auxiliary iterative process as a regional problem takes place only then when at least one of parameters ε  or 

a  exceeds parameter of defectnessδ : 

1.small parameter of multyscale-effects ε  more than small parameter of defectness δ :  δε >  

2. small parameter of adhesive interactions a  more than small parameter of defectness δ :  δ>a  

Here we are interested with a case when the boundary problem concerning free distortion degenerates in algebraic. If 

this special case takes place, non-uniform generalized  equations for moments (2.86) concerning free distortion 

degenerate in the algebraic equations. With the help of these algebraic equations components of the free distortion are 

excluded from system of the equations (2.82- (2.84): 
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Work of resulting force factors (last composed in (2.86)) which defines nonclassical boundary conditions is asymptotic 

neglible small. I.e. this work is equal to zero in asymptotic sense. Thus, the decision of the equations of the theory of 

mediums with kept dispositions in this case is reduced to a sequence of decisions of the classical theory of elasticity 

with the effective loadings dependent on even number of approximation. 
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Case when the small parameter a  is more the than others. 

Assume that δ>a  and ε>a . Let’s also present δδ δ >= aa log  and δδε εδ ≤= log , then the variation 

equation for  the auxiliary iterative process is possible to present in form: 
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Let's determine, at what n  both m  adhesive and multyscale-composed are essential. 
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as δ>a , then the numerical value of a parameter is equally 0log >− aδ . 

At such situation the asymptotic process is divergent. Thus, a problem follows to reformulate concerning the 

maximal small parameter. The similar situation will take place and for a case, when δε > . 

All these variants demand separate additional researches. 

Method of the reduced loadings. 

The free distortion it is determined from system of the algebraic equations and looks like: 
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If in last expression for free distortion to neglect local scale effects 
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On the basis of the constructed ratio (2.82) - (2.84) the algorithm of the account of damage of material in the basic 

intense condition further is offered. This algorithm can be used for the account of damage (development of porosity 

and so on), in about of the ends of cracks; damage of material in zones of concentrators of pressure; damage of zone of 

plasticity connected to development in the mechanics of destructions (see works on gradient of  plasticity [Hatchinson , 

1997; Fleck, Hatchinson, 2001 and so on]. On the other hand the developed method of the reduced loadings can be 

considered as theoretically proved way of the account of development of damage in the filled composites and 

anisotropic composite materials under various conditions of loading. Certainly, for this purpose it is required to give 
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generalization stated before results on anisotropic mediums that is connected only to some technical difficulties 

connected to increase of quantity independent component of tensors of modules pq
ijnmС  and ijnmA . 

Algorithm: 

1) 0=N . As consequence, thus 00 =pqd . 

Displacement to zero approximation 0
iR  is determined on known loadings as the decision of a classical regional 

problem: 
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2. 1=N .  It is determined of the free distortion as a first approximation 1
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3. The reduced loadings in the basic process for definition of displacements of the first approximation are determined: 
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4. There are displacements for the first approximation:  01 =iR  

5. It is determined of the free distortion for the second approximation 02 =pqd  

6. The reduced loadings in the basic process for definition of displacements for the second approximation are 

determined: 
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7. There are displacements for the second approximation as the decision of the following regional problemof the 

classical theory of elasticity:     
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Further for realization of algorithm points 1-4 for definition ,3
pqd 3V

iP 3F
iP , 3

iR  etc repeat. 

The common decision of a problem with the account of damage is in the form of decomposition: 
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As a whole constructed so the decision depends on two parameters 1212 , λμ  and two parameters 2222 , λμ  

(if to accept, that 0=pqχ ). Thus the following conditions should be observed: δε ≤  and δ≤a . Generally all these 

parameters should be found as a result of data processing experimental researches of a material, for example, curves 

describing process of dependence of degradation of mechanical properties from parameter of process (amplitude of 

loading at quasi-static loading or numbers of cycles loading etc.). 

If we are limited to the basic process on parameter δ  we a priori should assume that inequalities δε ≤ and 

δ≤a are carried out. Generally speaking, these assumptions should be checked up by experimental way. 

CONCLUSIONS 

1. It is shown in the present part that the defects of all known types can be described in the framework of the presently 

developed theory (or classification) of defects.  The choice of certain type of kinematic structure of the continuous 

medium with defects is determined by a requirement to describe certain physical properties of medium under study. 

For example, the models constructed on the basis of the Cauchy media principally cannot be used for developing a 

theory of fine dispersed composite materials. Indeed, the fine dispersed inclusions can be treated as dislocations in the 

parent phase or in the matrix. The same is true for the poorly degased matrix. In this case the gas bubbles can be treated 

as vacancies. Such dislocations cannot be born or disappear. Therefore the theory of fine dispersed composite materials 

can be developed only on the basis of the model of continuum media with defects of the first level with conserved 

dislocations. If the phase transitions take place in the continuous medium then they can be connected with the birth of 

defects – dislocations in the parent phase. It is wrong to attempt to develop such a medium model on the basis of the 

Papkovich-Cosserat continuous media. As a minimum, the required model in such case will be the Saint-Venant 

continuous media model with the generatable dislocations and conserved disclinations.  

2. On a basis of variational kinematical principle the full and correct model of mediums with conserved 

dislocations is given. The special attention is given to the analysis of kinematical correlations for at the variational 

description kinematics of medium completely determines the system of internal interactions in volume and on the 

surface of the considered body. On the basis of the carried out kinematical analysis the new classification of the 

dislocations is offered. This classification allows describe three types of dislocations: γ  - dislocations, θ - dislocations, 

ω dislocations.  

This classification, in the first, gives new kinematical interpretation of dislocations as reflects connection of 

dislocations with distortion-γ , with change of volume θ  (porosity) and with twisting ω  (curls or spins). The offered 

classification actually allows predicting of the special cases of dislocations when in the medium only one or two types 

of dislocations dominate. So, for example, in the medium with the distributed defects the dislocations generated only 

by free rotational displacements Ξ
kω can be dominating.  

The porous medium also can be considered as a special case of the general model. In the porous medium 

dominate the dislocations generated only by free volume change Ξθ .  
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At last, medium concerns to special models with one dominating type of dislocations with eight degrees of 

freedom iR , Ξ
ijγ  . The dislocations generated only by free distortion Ξ

ijγ  here dominate. It is obvious, that thus 

ΞΞ = ijijd γ . Similarly it is possible to predict presence of mediums with two types of dislocations.  

In works [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  2003; Lurie S., Belov P., Tuchkova N.  

2004; Lurie S, Belov P, Volkov-Bogorodsky D, 2002], the model of such medium has been considered. There the 

dislocations generated by free distortion Ξ
ijγ  were neglected. On its basis it is constructed a continual variant of the 

theory of interphase interactions [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  2003; Lurie S., Belov P., 

Tuchkova N., 2004]. This theory has allowed modeling and explaining known scale effects in mechanics of fine-

dyspersated composites, determined by cohesive and adhesive local interactions. The classification offered in the 

presented  part of work allows to consider also one more special case of mediums, where it is possible to neglect either 
Ξθ  (not porous mediums) or Ξ

kω  (spinless mediums). As far as it is known to authors, such mediums were not 

investigated yet.  

The offered classification is proved and from the physical point of view as shows physical meaning of various 

types of dislocations. So, it is proved, that the specified types of dislocations: γ  - dislocations, θ - dislocations, ω - 

dislocations give corresponding, mutually independent components in the basic, slow variable part of density of strain 

energy. These shares of potential energy have no cross terms. Thus, presence of a nonclassical, not local component of 

the potential energy connected to defects - dislocations is rather unexpected for gradient models, which is the model of 

mediums with system of the distributed dislocations.  

Use in the given work of the consecutive variational approach and the detailed analysis of boundary conditions, 

has enabled to formulate the consistent and coordinated boundary problem for mediums with conserved dislocations 

with nine boundary conditions in each nonexceptional point of a surface. It speaks that at the consecutive variational 

formulation of a problem, the coordination of mathematical statement is always achieved.  

At last, it is necessary to note, that within the framework of the offered model the spectrum of scale effects in 

volume and on a surface is taken into account. Really, the account of invariants of the dislocation pseudotensor 

ijnmijnmС ΞΞ33  in terms of potential energy with inevitability results in scale effects in volume. On the other hand, the 

account of energy of adhesion in expression of potential energy results in modeling the scale effects on the surface, as 

dimension of tensor A differs from dimension of the Young modules. Apparently, the submitted generalized model of 

mechanics of continua is the first correct theoretical model, in which various special scale effects (cohesion 

interactions,  a surface tension and so forth) in volume and on a surface are modeled within the framework of unified 

continual description. 

The Klapeiron’s and Dupre’s  theorems were proved. The Klapeiron’s Theorem is the fundamental theorem of 

any model of the solid medium. This theorem allows to connect the potential energy and the work of the external forces 

in accurate solution for the appropriate boundary-value problem. Dupre’s equation defines the connection between of 

the work of external forces for system of two bodies with adhesive interaction contact, the potential energies of these 
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bodies and the energy of their adhesive interaction. Thus, Dupre’s equation is the mathematical formulation of 

Klapeyron's theorem for this system of bodies.  Using «Dupre’s theorem» we can to define in the direct experimental 

way the energy of adhesive interaction of bodies on the basis of Young’s equation. 

3. The algorithm of the account of damage of material in the basic intense condition further is offered. This 

algorithm can be used for the account of damage (development of porosity and so on), in about of the ends of cracks; 

damage of material in zones of concentrators of pressure; damage of zone of plasticity connected to development in the 

mechanics of destructions. On the other hand the developed method of the reduced loadings can be considered as 

theoretically proved way of the account of development of damage in the filled composites and anisotropic composite 

materials under various conditions of loading. 
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3. THE THEORY OF INTERPHASE LAYER  
 

Introduction 
 Recently, in the papers [Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  2003; Lurie S, Belov P, 
Volkov-Bogorodsky D,  Springer, 2003], the generalized continuum model with kept dislocations was developed. 
The mathematical statement of the model was given. This statement may be considered as the generalization of the 
Cosserat theory of pseudo-continuums. Generally, the model presented allows to describe local-cohesion 
interactions[Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N, 2003] and superficial effects[Lurie S, Belov P, 
Volkov-Bogorodsky D,  Springer, 2003].  

On base of the continual theory of medium with kept defects the simplest variant of the cohesion interactions 
and superficial effects model is constructed. This model, represents nonclassical generalization of the theory of 
elasticity, and takes into account the "main", most essential contribution of scale effects from the point of view 
offered by authors of the common classification of models with scale effects [Lurie S.A., Belov P.A., Babeshko 
A.V., Yanovskii Y.G., 2002].  

Analytical estimations of properties of a biphase material  near boundaries of the phases, taking into account 
nonclassical effects are given.  Geometrical and mechanical properties of the cohesion interphase layer were 
received by the formal way. The interphase layer basic properties are specified.   

In result, formal theoretical bases of the cohesion-adhesive model of an interphase layer are constructed. 
In the given section on the basis of the previous researches the theory of an interphase layer is formulated. The 
description of the interphase layer theory and some main applications include the following moments: 

- the formal mathematical statement, 
- the physical constitutive equations,   
- the identification problem of the parameters determining nonclassical effects,  
- the qualitative analysis of the theory-analytical estimations of properties of an interphase layer,  
- the qualitative analysis of the theory-estimation of an interphase layer influence on the effective 

characteristics of a composite, 
- some application for quantum mechanical approaches, 
- numerical modeling of the stress state of the cell with inclusions and some notes about specific averaging 

procedures for filled composites, 
- previously  results of the generalized Eshelby problem 

 
3.1. THE FORMAL MATHEMATICAL STATEMENT FOR INTERPHASE LAYER THEORY. 
BASED EQUATIONS. 
The interphase layer theory allows to study the specific local interactions which determining features of the 
properties of contacting phases and material as whole: 
1.   cohesion fields and the internal interactions associated to them.  
interfacial adhesive interactions  
The marked types of interactions are characterized by essential localness, small area of interaction, concentrate 
about defects, borders, interfaces.  
The following requirements were formulated for correct nonclassical:  
The models have to describe the behavior of the deformed media taking into accounts the scale effects ( among the 
physical parameters of the models there should be the constants of various dimensions).  
The total deformation energy has to depend not only on the volumetric density of energy, but also on the surface 
density of deformation energy which could not to be reduced to some volumetric deformation energy. The surface 
effects and scale effects are determined by the phase interfaces.  
The deformation models have to be consistent and correct.  
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The generalized models of deformation taking into accounts the scale effects may not contradict the classical 
models, and have to include them as a limiting case.  
Further on the basis of variant of the defects (dislocations) preserving continuum theory, with use of system of 
additional assumptions the particular variant of moment cohesion model the appropriate superficial phenomena was 
offered. In the report (Technical Report 01.04.03 – 30.04.03) the reasonable set of the specified system of 
additional simplifications was given.  
General mathematical statement is formulated. This mathematical statement is completely determined by following 
equation for the Lagrange functional and the following variational equation:  
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Here,  are the components of the displacement vector, iR ijγ  and θ  are the components of the deviator of strain 

and spherical deformation tensor, kω  are the components of the rotation vector,  is normal derivation of the 

displacement vector on the surface; is the Levi-Civita tensor, 

iR&

ijkЭ ijδ  is the Kronecker delta, ijk
j

i
k Э

x
R
∂
∂

−=
2
1ω , 

is the normal vector to surface, in
j

j
ijkkijij

j

i

x
Э

x
θθξξδξ

ω
=

∂
∂

−+=
∂
∂

,
3
1

, λμ ,  are the Lame coefficient, and 

 is the physical constant that determine the cohesion interactions. C

It is worth emphasizing that the cohesion interaction model proposed contains only one new physical constant С  
as compared to the classical theory of elasticity. This constant has the dimension that differ from the dimensions of 
the Lame coefficients, and differ from them on a square of length. In the work [Lurie S., Belov P., Volkov-
Bogorodsky D., Tuchkova N., 2003; Lurie S., Belov P., Volkov-Bogorodsky D., 2003], it was shown that the 
constant   in (3.1) is related to conventional parameters of the fracture mechanics for a brittle material. In the 
given work, material mechanical and geometrical characteristics of an interphase layer will be defined with the help 
of this constant model for each of phases in a composite.  

С

Coefficient  is responsible for the surface effects at each point of the surface within the tangential plane. The 

coefficient is responsible for the interaction normal to the surface. Both of coefficients in (3.1)correspond to the 

interactions of adhesion type. In any event the surface effects  describe the local effects, which are concentrated 
near the domain boundaries.  

B

A

Constitutive equations 
Within the framework of the submitted statement the constitutive equations of model are specified. Let’s write the 
constitutive equations: 

Stresses fields are defined by classical equations: ijij
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and moment stresses:            ijkkij
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and moment vector 
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On a vector  it is possible to establish the effective normal stresses in a direction of a normal  and effective 

shear stresses in the appropriate tangent plane. Normal a component looks like: 
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tangent components of stresses are equal: 0)((),(~ =−−= jiijjjiijiij nnnnnT δδσ . 

Correct boundary problem 
Integration by parts allows constructing a correct boundary problem, which gives mathematical statement in 
moment adhesive-cohesion model: The variation statement of this model leads to the following  mathematical  
formulation of the problem: 
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on any plane with a normal  on the boundary surface the vector of forces  is determined in iT
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HereΔ  is the Laplace operator, 
C

l μ
=2

0 ,  are components of the displacement vector, iR ijγ  and θ  are the 

components of the deviator of strain and spherical deformation tensor, kω  are the components of the rotation 

vector, is the Levi-Civita tensor, ijkЭ ijδ  is the Kronecker delta, λμ ,  are the Lame coefficient, C  is the physical 

constant that determine the cohesion interactions (Annual Report 2002,2003),  is the vector of density of the 

external loads over the body volume,  is the vector of density of the surface load,   is the boundary surface  

and  is the operator of the classical theory of elasticity, that is, 
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 is energy, which associated with changing of defectiveness of a 

surface of contact because modified a surface.   
jijiijjijijiij RRnnBRRnnARRD &&&&&& )( −+= δ

New physical constants  and  determine the surface effects associated with the normal to the surface of the 

body, and the superficial effects in the tangent plane respectively. Note that the ideal adhesive interactions 
influences only for a local state and does not change classical boundary conditions. 

A B

To understand the physical sense let's define displacement of cohesion field. Let's name a vector of the cohesion 
displacement the following vector: 
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Using (3.2) we receive the equations for a vector function  (3.3): iu
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Similarly we shall enter definition of a vector of classical displacements . In the equation (3.3) it is possible to 

change a sequence of action of operators. Then we shall receive the following definition of a vector : 
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Obviously, the vector  is satisfies to the classical equations of balance: iU
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Taking into account definitions (3.6) for  and definitions (3.4) for  the general solution of the equations (3.3) 

it is possible to present as the following decomposition: 
iU iu

               (3.7) iii uUR −=

Thus, the boundary value problem (3.3) represents the couple boundary value problem for the classical solution and 
the solution for cohesion fields model. The boundary value problem generally is not divided. 
The formulas (3.3)-(3.6) show the structure of solution in framework of the model with scale effects. 
 
3.1.1. Particular models. 
 
Let us consider the formal two and one-dimensional statements of the boundary problems. 
Two dimensional  problem 
Projections of the load to the ort vanish:  and . Similarly, projections of the displacement 

to the ort vanish: 
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V
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Thus, it is assumed that the displacement vector is determined in plane area Ω  with the boundary . Variational 
equation (3.3) is reduced to:        
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In the last equation the contour integrals ( the second line) are equal to zero when the  considered plane area  has 
no angular points. 

G

In particular case the problem is reduced to the boundary value problem with respect to a scalar function, 

determined within the  with the boundary . The scalar component of displacement may be three-dimensional, 
two-dimensional and one-dimensional function of coordinates. Two variants will be considered: two-dimensional 
and one-dimensional cases. 

Ω G

 
One dimensional  problem 

Let us consider the formal one-dimensional statement of the problem. Projections of the load to the orts  and 

vanish:   and . The displacement vector is collinear to  axis: 
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    (3.9) 

The equations (3.3), (3.8), (3.9) give the full mathematical 3-D, 2-D and 1-D statements for the models that allow 
to describe the deformation of the mediums taking into account cohesion types interactions and surface effects. 
The statement (3.9) is base for receiving of the analytical solutions and  for analytical estimations of the mechanical 
properties of the interphase layer. 
 
3.2. SOME QUALITATIVE ANALYSIS OF RESULTS.  
EQUIVALENT TREATMENTS OF THE INTERPHASE LAYER. 
The purpose of our consideration is the approached estimations of properties of the non-homogeneous continuums, 
based on consecutive and strict theoretical positions.  
For an explanation of phenomenons of scale effects in mechanics of materials authors of the report proposed to use 
the simplest variant of the correct and variation-coordinated model. For the greater clearness it was used the 
simplified, one-dimensional statement of the problem, allowing to receive the analytical solution of a problem 
within the framework of nonclassical model (Annual Report 2003, Annual Report 2004). It allowed clearing 
physical sense of scale effects to specify a range of change of known parameters of a material at which scale effects 
can be shown in the form of mechanical effects, nonconventional from the point of view of the classical 
description. 
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To describe the interphase layer properties let’s remind the main stages of preliminary composite structure 
investigations. The compound of biphase strictures were considered. One dimension consideration was used as 
basis. The following parameters of phases were taken into account: a) the length of the first phase is ( 10 xxx <≤ ), 

physical parameters of first phase are determined by Joung’s moduli  and the cohesion moduli , b) the 

length of the second phase is ( ), physical parameters of second phase are determined by Young’s 

moduli  and the cohesion moduli . The line 

ME MC

21 xxx ≤<

DE DC 1xx =  is contact of phases. The compound fragment was 

loaded with the tension on the edges  and 0xx = 2xx = . The following steps was done: 

-The equilibrium equations were solved for each fragment separately. The exact common solution for compound 
fragment was found.  
-Potential energy of a compound fragment can be calculated using exact solutions for fragments and contact 
problem as whole. 
-Comparing this potential energy of a compound fragment with potential energy of the equivalent homogeneous 
fragment of material allow to find the effective mechanical properties for the compound of  biphase strictures in 
framework of the multiscale research.  
The direct calculation of the potential energy of a compound fragment gives: 
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Using equation (3.9) we can write the following equation 
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where are the full length of a compound fragment, )( 2 oxxl −= ),( 01 xxlM −=  ,   is moduli 

of elasticity of an equivalent homogeneous fragment,  is the length of the individual element of the 

first phase (matrix) in the considered combined element;  is the length of the individual element of 
the second phase (inclusion) in the considered combined element. The equation (3.10a) models a compound cell as 
a certain biphase material with the modified volumes of phases, due to the account of a boundary interphase layer. 
Natural reduction interphase a cohesion layer to mechanical characteristics of two phases takes place.   

)( 12 xxlD −= 0E

)( 01
0 xxlM −=

)( 12
0 xxlD −=

fx  Effective length of  interphase layer 

It is interesting to note, that definition of thickness of an interphase layer is connected to size . The given 

thickness of an interphase layer accordingly to properties of a matrix and inclusion, is equal  and occupies a part 

of volume of a "weak" material of a matrix, adding a part of effective volume of a rigid phase of inclusion. Having 
in view of, that the generalized characteristic , it is easy to specify connection of the received result with results 

of modelling on model of an effective field (effective matrix) Mori and Tanaka (Mori and Tanaka, 1973) and 
models of an effective continuum (Hershey, 1954; Hill, 1962, 1965; Budiansky, 1965; Budiansky and O’Connell, 
1976; O’Connell and Budiansky, 1974). 
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The formula for energy of deformation of a considered fragment can be written in the other view 
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Let's notice, that the formula (3.11) allows to find the average moduli of elasticity of an equivalent homogeneous 
fragment through characteristics of phases: 
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Equality (3.12) shows, that the offered model naturally enters definition of the fictitious interphase layer connected 
with by cohesion interactions, located about border of contact of phases. As consequence, energy of interaction 
corresponds to a compound cell from three phases which in the given modelling problem are averaged under 
Reuss’s scheme. Thus the general length of a compound fragment is kept constant that the part of an interphase 
layer  lays in a matrix, and other part  - in inclusion. Hence, the layer of a matrix in length  

 has the moduli equal to the moduli of a matrix . The layer of inclusion in length 

 has the moduli equal to the moduli of inclusion . The third phase is  interphase layer 

in length .  Its moduli is determined by the mechanical and geometrical parameters of a matrix and 

inclusion  and adhesion properties. 

Mx Dx

Mxxxl −−= )( 011
MEE =1

Dxxxl −−= )( 122
DEE =2

DM xxl +=3

Notes about adhesion interactions. 
 Let’s  give sone notes about adhesion interactions. Within the frame of the conducted according to the 
project investigations, a model of “cohesion” interphase layer accounting for the scale effect was suggested 
(Annual Report, 2003). Initially the model was related to the local interaction of cohesion type. The relation of the 
model with the cohesion field is explained by the fact that the solution found for the crack of normal opening 
corresponds to the cohesion field in the vicinity of the crack tip, and the unique constant of the model may be 
expressed in terms of parameters of fracture mechanics. Besides, it was shown (Annual Report, 2003, Section 2.6) 
that the suggested model yields the natural description of the additional layer localized in the vicinities of the 
interphase boundaries while determining the effective stiffness of non-uniform fragment. Hence, the suggested 
variant of the “multiscale” model of deformation of the multiphase media may be reasonably considered as a model 
of the interphase layer.  

On the first stage the model of the “moment cohesion”, which mathematical statement is given in 
previously Section, does not account for the surface effects. This  model describes only the local character of 
interaction of cohesion fields of the phases in the contact zones. Therefore, we will call this model (modeling 
mechanical parameters of the layer)  “pure cohesion” model of the interphase layer.  On the second stage 
(Technical Report, 01.04.03-30.09.03; Annual Report, 2004) both the for the surface effects and cohesion local 
effects were taken into account  in framework of multiscale model of the ” interphase layer. 
Let's make some remarks concerning adhesive effects based on the results of the Intermediate Technical Report 
01.04.03-30.09.03, Annual Technical Report 2004).We established early that superficial effects are described with 
aid of additional coefficients in the expression in the  superficial density of energy of deformation. These 
coefficients according to its physical nature have to be related to adhesion restrains.  We received (Intermediate 
Technical Report 01.04.03-30.09.03, Annual Technical Report 2004) that the part of potential energy corresponded 

by the superficial effects can be written as  in the square-law form 

for superficial density of energy of deformation. It is important to notice, that the account of such superficial 
interactions formally results in change only "nonclassical" boundary conditions. Really, the new physical constants 

determining properties of a surface, enter into expression for variation Lagrange only at a variation of a normal 

derivative from displacements. Thus, the account of ideal adhesive interactions influences only for a local state and 
does not change classical boundary conditions. Other words the principle of localness nonclassical part of solution 
takes place.  

jijiijjijijiij RRnnBRRnnARRD &&&&&& )( −+= δ

ijD

Let's notice, that if the surface is somehow modified then properties of a surface at the contact of phases also can be 

taken into account with the help items of type  in superficial density of energy of deformation. However jiij RRD &&
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thus factors  are not connected with cohesion characteristics of phases and can vary over a wide range. We can 

treat the superficial density of deformation energy   as energy, which associated with changing of 

defectiveness of a surface of contact because modified a surface. Thus, if parities  for pair a matrix 

(М) - inclusion (D) the superficial interactions connected to the account  result in reduction of rigidity of 

phases contact (defectiveness) are carried out. On the contrary, if for pair a matrix- inclusion takes place an 

inequality the increase of rigidity of contact of phases as a whole takes place. The similar situation 

takes place with constants . Note that to rigidity with the top index "M", correspond to a soft phase, and with an 

index "D" - rigid. More common the qualitative analysis of the interfacial potential energy and physical 
sense  all set of physical constants associated with adhesion interactions was done in the Chapter 2 of the present 
Report. 

ijD

jiij RRD &&

0<− DM AA

jiij RRD &&

0>− DM AA

B

Estimation of the average Young elastic modulus  and shear modulus of the interphase layer 
The following approximate analytical formulas take place for estimation of the average Young elastic 

modulus  and shear modulus of the interphase layer(Annual Report, 2003, Section 2.6; Technical Report, 01.04.03-
30.09.03 Section 2.2.): 
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Analytical estimation for the shear elastic modulus of the  interphase layer: 
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where  is the length of the individual element of the first phase (matrix) in the considered combined 

element;  is the length of the individual element of the second phase (inclusion) in the considered 

combined element The first phase (

)( 01
0 xxlM −=

)( 12
0 xxlD −=

10 xxx <≤ ) of the fragment is determined by Young’s modulus and 

cohesion modulus , the second phase (
ME

MC 21 xxx ≤< ) does by Young’s modulus  and cohesion modulus ,   

   are shear moduli of the first and second phases the fragment,  constants  and  

describe the adhesion properties of the contact intherphase layer. In the whole, the mentioned relations for the 
elastic moduli of the interphase “cohesion” layer are determined in terms of the elastic moduli of the phases and 
two additional “cohesion” constants. 

DE DC
DM GG , DM AA − DM BB −

Let's put, that the stresses of phases are constant in a vicinity of border of  phases. Then, the modulus of elasticity 

varies under the same law as deformation.  Assume for simplified that .  Then on the basis of the 

received solution we can receive that flexibility of a matrix  is monotonously reduced at approach border of 

contact of phases, and the flexibility of inclusion  is monotonously increased near border of contact of 
phases: 
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 So, we propose the new treatment of the interphase layer. Interphase layer is intermediate layer in the contact zone 
where modulus of the elasticity is not constant. Modulus of the elasticity of intermediate layer changes 
continuously  from modulus of inclusion to modulus of matrix as exponential function. 

Characteristic of effective length of an interphase layer. 
The effective characteristic length of the interphase layer  also changes due to account of the local adhesion 

effect to normal of the surface. This length  rises when  and diminishes when  (defect of 

bound interactions). 
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The  similar equations we can find  for estimation of the characteristic length  of the interphase layer in the 

tangent direction on the surface 
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Note that ,   in (3.15),(3.16) have dimensional length, and define the effective thickness of an interphase 

layers for tension and shear on border of two phases, matrix – inclusion. 
fx fy

 
Equivalent treatments of the interphase layer. 

The publications devoted to the study of effective characteristics of composites may be conventionally subdivided 
into three groups: the method of effective inclusions, the method of effective matrix, and the method based on the 
hypothesis of three phases. Let us now demonstrate that the model of inter-phase layer proposed in this work 
include all the three methods mentioned as its consequence. Let us consider one-dimensional statement for a two-
phase structure. In this case, in accordance to the classical theory for a two-phase fragment, we can use the Reuss 
formula for determination of effective properties of a composite. In the case of two-phase material, the 
modification of this formula based on some additional hypotheses (the method of effective inclusions, the method 
of effective matrix) is in contrast with the theory of elasticity. The theory of cohesion layer is a non-classic 
generalization of the theory of elasticity. 
Consider the relationship for generalized rigidity (3.10a) (the generalization of the Reuss formula) and rewrite it as 
follows: 
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The model of effective matrix, the model of effective inclusion, and the model of three phases can be obtained as a 
consequence of this formula.  In accordance with the model of effective matrix, we get the following values of 

effective rigidity:
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; here, the effective modulus of the matrix  can be calculated from the ME*
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, where the properties of 

the phases are determined by the moduli ME , DE , and , respectively, and the lengths of the phases are 

, , and 
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 Thus, using the model of inter-phase layer, we have an opportunity to provide some grounding in theory for the 
hypotheses discussed earlier. 
 
3.3. ANALYTICAL ESTIMATIONS OF THE INTERPHASE LAYER PROPERTIES  
 
Further to estimate the contribution of cohesion interactions at calculation of integrated characteristics, we will 
formulate some results of the analysis for solution of the cohesion type model from the point of view of taken into 
account scale effects.  For simplicity we will consider the case of the pure cohesion  type interactions and will 
assume that constants  and ,A B  associated  with adhesive properties are equal to zero,  .  The analysis 
is based on the comparing of the lengths of different phases with the length of the cohesion type interaction for 
which of the phases. The analysis of the equations (3.13)-(3.16) allows to establish the following estimations:

0== BA

 
1. Some initial estimations of an interphase layer 

Mxxxl −−= )( 011  strictly more zero ( 0)( 01 >− xxaM ).  1. 1. Effective length of a matrix 

0)( 011 >−−= Mxxxl  

Consequence: the cohesion field of a matrix lays inside a matrix 0)( 01 >>− Mxxx . 

1.2. Effective length of inclusion Dxxxl −−= )( 122  strictly more zero ( 0)( 12 >− xxaD ). 

0)( 122 >−−= Dxxxl  

Consequence: the cohesion field of inclusion lays inside inclusion 0)( 12 >>− Dxxx . 
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In case of a homogeneous fragment . MD
f EEE ==

2. Estimation of characteristics of an interphase layer fE  and . fx

2.1. The sizes of phases considerably exceed lengths of cohesion interactions, 1)( 01 >>− xxaM  and 

. 1)( 12 >>− xxaD
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The  following micro-mechanical description of an interphase layer are  valid: 

][
)(

][
][

D
M

M
D

MD

f
MD

D
M

M
D

f aEaE
EEx

aa
aEaEE

+
−

=
+
+

=       

For classical model it is necessary to accept . Hence, the interphase layer is absent, ∞→∞→ MD aa ,
0→fx .  

2.2.   The size of inclusion less appropriate of cohesion zones: and 1)( 12 <<− xxaD , small concentration of 

inclusions: . 1)( 01 >>− xxaM

Variant of the nano-mechanical description of an interphase layer at small concentration of nano-inclusions 
(properties of inclusion it is determined it  by a cohesion field) 
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2.3. Ultrahigh concentration    of the big inclusions 1)( 01 <<− xxaM 1)( 12 >>− xxaD  

Micro-nano-mechanical  the description of an interphase layer (interaction of a matrix is defined it  by a cohesion  
field) 
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2.4. Ultrahigh concentration of nano-inclusions: 1)( 01 <<− xxaM  and 1)( 12 <<− xxaD  

The full nano-mechanical description of an interphase layer for high - filled composite with nano-inclusions.   
a) The moduli of an interphase layer is with the help of the classical circuit of averaging by Foyght:  
Really, from formulas (3.14), (3.16) we have 
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3. Estimations of parameters of an individual equivalent homogeneous fragment 
3.1.  The sizes of phases considerably exceed lengths of cohesion interactions, 1)( 01 >>− xxaM  and 

. 1)( 12 >>− xxaD

Then the circuit of averaging by Reuss is fair. 
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3.2.  The size of inclusion less appropriate of cohesion  zones: 1)( 01 >>− xxaM  and 1)( 12 <<− xxaD  

Then we receive variant of nonclassical model (with the effective moduli of inclusions) with small concentration of 
inclusions. 
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3.3.  High concentration of the big inclusions: 1)( 01 <<− xxaM  and 1)( 12 >>− xxaD  

The variant of nonclassical model (with the effective moduli of a matrix), but with the classical scheme of 
averaging by Reuss takes place. 
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3.4. High concentration of small inclusions:  1)( 01 <<− xxaM  and 1)( 12 <<− xxaD  

The homogeneous environment is described by the effective moduli of an interphase layer 

fEE =0  

Note that on the base of received results it is easy to establish the equations, which allow to estimate the properties 
of fragment from three different phases and so on.  Then we can get some generalized of the last formulas in item 
3.4.  that allow to estimate properties of the ceramics. 
 
 
3.4. SOME APPLICATIONS AND NEW PARTICULAR RESULTS. 
 
In this section we marked some  particular results, that are new  in the theoretical sense and fundamental results.  
 
3.4.1 Modeling of the cohesion field near top of the crack of the normal opening. (Nonsingular 
crack). Estimation of a physical constant . C
 

Nonsingular solution  for crack (model task). 
Let's consider problem about the crack of the normal opening within the framework of double plane 

statement. Consider a model problem of the crack of the normal opening in the frame of the doubled plane state, i.e. 
suppose that among two components of the displacement vector only component  remains 

nonzero (see statement in Annual Report for 2003 and (2.7) in Annual Report for 2004). The expansion of a 
solution of the cohesion field model as the sum of solutions of the harmonic equation and Helmholtz’s  equation is 
used. Let's remind, that classical stress is understood as expression obtained after an operation of an operator of 
stress on a classical part of displacement U . Similarly, the cohesion stress is the expression obtained by an 
operation of an operator of stresses (see section) on cohesion displacement  is understood. If to express classical 
and cohesion transition through complete displacement 

),(),( 2 yxUyxv ≡

u
r  it is easy to establish following. The equality to zero 

simultaneously classical and cohesion stress on boundaries of the crack reduces in precise sufficing of boundary 
conditions for couple model of cohesion field. 

 
The following solution was obtained for the crack of the normal opening as a non-singular solution at :  0→r

 [ ] )sin(2 2/1

αϕ
μ

μ
π

α
α

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂ rCrK

Cy
v

     (3.17) 

where 2/1=α , 22

)2(
xyr +

+
=

λμ
μ

 

  For ∞→r  solution (!.1) behaves as the classical one, because McDonald’s function decays as an 
exponent. The figure shows the qualitative strain distribution at the crack tip with respect to parameter .  C
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Fig.3.1.  Strain distribution at the crack tip for various C  ( ) 321 CCC >>

 
 Summary. A variant of variational algorithm to construct models on the base of the introduced kinematics 
constrains is suggested. As an example, the simplest medium model accounting for both volume and surface scale 
effects has been constructed. It has been shown that in the frame of this model, the cohesion field, similar to 
Barenblatt’s one (Barenblatt,1962) is described in the natural way.  
 
The next section concerns the identification problem respect to additional physical constant . C
 

Estimation of a physical constant C . 
Solution allow to give same simplified estimations for new physical constant of the model  C .  We will 

use the asymptotic solution near end of a crack. Aaccording to a solution (!.17)  we can  write 
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ϕσσ
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−−
= ,  

E
Ca =2 , E -is modulus of elasticity    (3.18) 

Let's define distance , on which stress as the function 0r r  accepts a maximum value. A requirement 

0
)(
=

∂
∂
ar
σ

 

gives the following equation for definition :  0ar

0210 arear +=  
It is easy to show, that last equation has the unique natural root: 

1,2564310 == arq  
Hence, we can write: 

2
0

2
0

2 1,578619
r
E

r
EqC ==  

Let's define displacements ),( ϕrv . We have: ϕϕσϕ
ϕ

rd
E
rrvrv ),()0,(),(

0
∫+= . Substituting in this equation 

expression for stresses we can find: 

)
2

())(1(2),( 2
1 ϕσϕ Cosare

aE
rv ara −−−=  

Let's find the connection between amplitudes of   the displacements and stresses in a point where the stresses reach 
a maximum value. The magnitude of transverse displacements in this point we can define as magnitude of the crack 
open displacement. We can write 

a
ara are

aE
rv δ

σ
−=−−= − 2

1

00 ))(1(2)0,( 0 , 

where aδ  is  the crack open displacement. 
For amplitude of the stresses we can receive the following equation: 

a
a

a Ea
q

qaE δ
δ

σ 0,623581
4

)21(
2
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+

=  
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Let us consider equation (3.18). Assuming that maximum of stresses is reached in the point πϕ == ,0rr , we can 
find: 

max
2

1max 1,566974
2

)21( σσσ =
+

=
q

q
a  

Taking into accjunt the previous equation we can write 
aEaδσ 0,397952max =  

Assume that crack open displacement aδ  reach to critical value cδ , when stresses  maxσ  reach to magnitude of 
theoretical strength cσ . Thus, we can introduce the definition of the critical value of crack open displacement: 

a
Ec

c 0,397952
/σ

δ =  

Then, we can write: 

2
22 1)

0,397952
/(

c

c E
E
Ca

δ
σ

==  

Let’s find estimation Ec /σ , which can be received on the base of analysis interaction between two layers of 
atoms. The character of  interatomic interaction can be shown on the dependence stress-interatomic layer fig 3.2. 

 
fig 3.2. 

Let’s approximate this dependence  on the interval ( )+∞,or ,  with the aid trigonometric function: 
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Let’s interpret value ( ) oo rrr −   as tensile strain ε  and 
0=

=
εε

σ
d
dE .  

We will call сσ  as ultimate theoretic strength. Experimental dates show that destruction of materials has place for 
stresses less then сσ1.0 .  
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We can find the following equation  

,2 Есс π
εσ = or  

π
εσ сс

Е
2

=  

here ( ) сooс rrr ε=−

C

 is  ultimate deformation. 
 
Using of the last equation leads to the following formula for constant : 
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c

      

It is possible to define the value (the length of Barenblat’s zone (Barenblatt, 1962. ) through the critical value of 
crack open displacementδ : 

cr δ3,1415880 =  
At last, the additional modulus С  can be defined  through specific surface energy γ .  Taking into account the 
famous definition for value γ  we can get:  

c
с

cc Еδ
π

In result, we have the following equation: 

εδσγ 22 ==  

2

34

0,25857
γ
ε EC с=  

Thus, we established that new physical constant of the model C  is determined through based constants of fracture 
mechanics: 

2
0

2

2580,25
r

EC сε= 0r;   ( magnitude of the Barenblatt’s zone - ) 

2

2

2,55917
c

с EC
δ
ε

= c;  (critical value of crack open displacement -δ  )    (3.19) 

2

34

0,25857
γ
ε EC с= ; (specific surface energy γ  )  
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03428,1
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с

К
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So, formulas (3.19) give approximated estimation of the constant of the “momental cohesion model” with the aid of 
the famous parameters of the fracture mechanics. Other words we received some solution of the identification 
problem respect to the physical constant C . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, when ( ) 1~1 2ν− СК1; ( -is stress intensity factor , ν is Poisons coefficient) 



3.1. Table of the material properties and constant   C
Materials Ultimate 

stresses 
σ  

ν , 
Poisons 
coefficient 

Е, Гпа G, 
ГПа 

сε ,% 
 
 

10610, −− Сα
for 
temperature 

0C20-100  
0100-200  C

200-300  0C

2/1
1 ,

мМПа

К С

⋅

С,  

2м
Па  

мl 6
0 10, −  

Steel 
Steel 3 7860 0,33 210 77 5-8 13,3 96-110 0,204⋅1021 –

1,80⋅1021
32,11- 
107,92  

Steel 20 7860 0,33 210 77 5-8 13,3 124-170 7,318⋅1021- 

31,61⋅1021
53,57-257,75 

Alloyed steel 
30ХГСН2А 

7770 0,26 195 77 8 10,6 
11,2 
13,0 

250-300 14,74⋅1021 –
30,58⋅1021

252,53-
363,64 

Alloyed steel 
40ХСН2МА 

7810 0,26 195 77 10 11,2 
12,7 
13,5 
14,2 

180-210 1,499⋅1021 –
2,778⋅1021

83,78-114,04 

Alloyed steel 
 
Н18К9М5Т 

8000 0,3 190-218 70-72 5-14 11,2 115-180 1,12⋅1021 –
15,21⋅1021

13,96-353,00 

Steel for cryogenic 
structures 
07Х16Н6 

 8000        0,3 207-221 79 20-23 10,5 105-138 1,73⋅1021 –
12,55⋅1021

4,20-10,93 

aluminum alloy 
aluminum alloy, D16 2800 0,34 72 27 10-19 22,9 26,7 0,394⋅1021- 

5,132 ⋅1021
3,75-13,52 

В95 2850  72 26,5 12 22,9 51,0 6,134⋅1021 34,26 
АК4-1 2800  72 27 6-8 20,8 

23,0 
23 0,293⋅1021- 

9,27⋅1021
15,67-27,87 

1420 2470  75  9-10 22,2 21,3 0,782⋅1021- 
1,192⋅1021

7,93-9,79 

 105 



106 

В93пч 2840  72  7-9 22,0 
23,9 

26,7-37,8 0,258⋅1021 –
2,351⋅1021

16,69-55,31 

В95пч 2850  72  12 22,0 
23,9 

34,7-40,9 0,148⋅1021 –
0,286⋅1021

15,86-22,03 

В96Ц1 2890  72  8 22,0 
23,9 

26,7 0,161⋅1021 21,13 

Titanium steels 
ВТ3-1 4500 0,35-

0,38 
115 39,2 14-21 8,6 

9,8 
10,9 

55-67 0,369⋅1021 –
4,42⋅1021

5,1-17,03 

ВТ-6 4430  115  10-13 8,4 
8,7 
10,0 

80,5-90,0 0,141⋅1021 –
3,17⋅1021

28,51-60,22 

ВТ-9   118  8-14 8,3 
8,6 
8,7 

80,0-81,5 0,222⋅1021 –
2,197⋅1021

23,06-73,29 

ВТ-22 4600  110  10 8,0 
8,2 
8,4 

69,5 7,139⋅1021 39,25 

ceramics 
ceramics MgOZrO +2  3700-

4300 
0,3 172   0,58 5,9   

ceramics  1253 OAlY       8,7   
ceramics 32OY        2,5   

ceramics 322 OYZrO +  5900-
6090 

 172    11-18   

Nonmetallic materials 
soda-lime glass 2400-

2580 
 74-95  0,01  1,7   

plexiglass       2,9   
acrylic resi 1110-

1210 
 1,88    4,5   

 

 

 



3.4.2. About Generalized Eshelby Solution 
In framework of  a work under project the generalized Eshelby solution was construct  based on the 

model which takes into account the local scale effects.  Let’s remind that Eshelby received[Eshelby J.D., 1957]  
the following equation  

(0)ˆ( ) ( )c
ij ijpq pqP S Pε ε=  

which allow to connect the field of  restricted deformation in inclusion and the field of  “free from stresses 

deformation”  , with the aid of classical matrix (Eshelby matrix). Here  is deformation of  the 

embedded inclusion  together with matrix under homogeneous loading of  matrix  with inclusions (by stresses 
on the infinity).  

cε
)0(ε ijpqŜ cε

In compliance with the  fundamental Eshelby’s  method the effective  mechanical properties of 
composite  (the matrix  with inclusion of any shape)  can be found  using the Eshelby’s matrix effλ

( ) ( ) 1011000 −−−
+=+=+= SSKKeff λλΔλΔλΔλΩλλλ      (3.20) 

or 

( ) ( ) 1101000
−−−

+=+=+= λλΔλΔλλΩλΔλλ SISTTeff     (3.21) 

Here is tensor of moduli of elasticity for the matrix without inclusion, and 0λ λΔ is matrix of jumps of moduli 
of the elasticity between inclusion and matrix. 

In our work we received the generalized of the Eshelby’s solution. The generalized matrix has the 
following view 

 `         (3.22) ˆ ( ) ( ) ( )ijpq ijpq ijpqS P S P S P= −%

where 

( ) ( )ijpq ijkl klpqS P T P C=% % ,     , , ,( ) ( ) ( )
( )

8 16
li kj lj ki ijkl

ijkl
P P P

T P
(1 )

δ ϕ δ ϕ ψ
π μ π μ ν
+

= − +
−

% % %
% ,  (3.23) 

( )
G

d PP
P P

ϕ
′

=
′−∫% ,      ( )

G

P P P d Pψ ′ ′= −∫% ;       (3.24) 

( ) ( )ijpq ijkl klpqS P T P C= ,     , , ,( ) ( ) ( )
( )

8 4
li kj lj ki ijkl

ijkl
P P

T P
C
Pδ ϕ δ ϕ ψ

π μ π
+

= − + ,   (3.25) 

2

2( ) ( , )
P P

G

eP P d
P P

κ

ϕ ϕ κ
′− −

P′= =
′−∫ ,     2( ) ( , ) ( , )P P P 1ψ ϕ κ ϕ κ= − .    (3.26) 

the functions ( )Pϕ  also ( )Pψ  are like volumetric integrals generalizing Newton potential on Helmholtz 

equation, 1 2Cκ μ λ= + 2 Cκ μ= . 

This solution was established with the help of Ostrogradsky-Gauss theorem using the following 

expansion for common vector of displacement: uUR rrr
−=  )(1 R

C
RU

rrr
L−=  )(1 R

C
u

rr L−= . 

The following equation was used for vector of displacements ( , )ju P P′r
, caused by the point force applied in a 

point (generalization of the fundamental solution of a classical problem of the elasticity theory (Somilliana 
tensor)): 

P′

( , ) { }j iju P P u′ =
r

,  
1 2

2

21 1 1( , )
4 4

P P P P
ij P P

ij
i j

e eu P P e
P P x x P P C

κ κ
κδ

π μ π

′ ′− − − −
′− − ⎛ ⎞∂ −′ = − ⎜ ⎟⎜ ⎟′ ′− ∂ ∂ −⎝ ⎠

 

here  is a point of the action of point force, P′ ijδ  – Croneker symbol, 1 2Cκ μ λ= + 2 Cκ μ= . In 
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extreme case  the solution above transforms in classical Somilliana tensor [Christensen R.M. 1979.]. 0C →
ralizing Newton potential on Helmholtz equation: 

The matrix (3.23), (3.24) corresponds to the classical solution and coincides with a matrix received by 
Eshelby in the work [Eshelby J.D., 1957], and the matrix (3.25), (3.26) corresponds to the  cohesion field and is 
the modification to the Eshelby solution, caused by the work of a surface layer in considered model of spatial 
moment cohesion. 

Explicit analytical formulas (3.23), (3.24) define behavior of the constructed solution in a matrix and 
in a inclusion. Eshelby has been investigated in detail the behavior of a classical part of the solution, which has 

asymptotic on infinity as 2A r . He in particular has shown that the solution is homogeneous inside inclusion of 
ellipsoid form, and also has calculated through elliptic functions values of elements of a matrix, which is in this 
case a constant inside inclusion. 

Also the solution (3.20)  has a similar behavior. It is exponentially tends to zero on infinity and weakly 
varying near some constant value inside inclusion. Formulas (3.25)- (3.26)  can be used for averaging a 
composite material within the framework of spatial model of moment cohesion.  
We can formulate shortly the advantages of a technique, based on the equations(3.20)- (3.26): 
1. Almost analytical relations which are convenient for the numerical analysis 
2. Common algorithm of definition of the effective characteristics of Composites which was developed by Mura 
1982 remains the same 
3. This technique allows to consider both small volume fractions of inclusions, and finite volume fractions of 
inclusions (a differential method) 
4.  The technique is remained in force for inclusions of the any form and any orientation 
5.  Only three additional constants completely describe characteristics of an inter-phase layer (C, A, В)  
 

3.4.3. A meniscus as multiscale effect. 
 Assume that the element of the medium is deformed between two rigid plates. The length of the 
element is . The distance between plates is . At the edges of element ( ) the constant 
tension stresses are applied. Friction between plates and an element of medium is absent. The problem 
about a meniscus is considered. We assume in this problem that displacement field is defined by the 
longitudinal component of displacement  in direct of axis 

l2 h2 lx ±=

),( yxr x  only:  ii rXR =
The solution of this problem is interesting from the point of view of studying of the role of 

adhesion in effect of formation of a meniscus. The problem about a meniscus can be used for statement 
of experiment with definition of adhesive parameter. The differential equilibrium equation has the 
following view:  

. 0222 =+∇+∇∇ qrr
C
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The boundary conditions is: 

for :      lx ±=
0),(),(

2
)],(),([

2

2

=+

=∇−

ylr
C
EylrA

h
Pylr

C
GylrE

&&&

&&
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Coefficients   are defined the adhesive effects concerning tension - compression and shear. BA ,
It is convenient to use the following expansion of the total displacement on the “cohesion” and 
“classical” displacements:  

r
C
Gur

C
GrUuUr 22 ,, ∇−=∇−=−=  

Then, for simplified cases the boundary problem can be formulate as two independent problems. 
The first problem is the “classical” problem:  
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.0),(,
2

),(,02 ===∇ hxUG
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PylUEU &&  

The second problem is the boundary problem of the cohesion field: 
,02 =−∇ CuuG  

and boundary conditions:  0),(),(,
2

),(),( =+=+ hxBuhxuG
h

PylAuyluE && ,  
2

2

2

2

B
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A
EA ==  

Variational statement was formulated in the Technical Itermediate Report 2004(for 10 quarter). We 
found approximate solution using the Ritz’s method using expansions of boundary problems mention 
above.  Let’s take the approximate functions as fundamental solutions of classical and “cohesion type“ 
boundary problems in framework of the Ritz’s method.  Results of solution of the model problems 
( ) we on the  can see figure 3.3. The solid line  ( ) 
and dotted line ( ) show the distribution of the relative angle of wettability 
( ) for variable of the parameter of shear adhesion 

properties

10/,10/,0 === GCGEA 0≥qparameter
0≤qparameter

xaxisalonentdisplacemeisuyuG ),/( ∂∂

G
Bhq =    (h is width of capillary) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 3.3. 
So, we can see results of  modeling of wettability  ( ) and non-wettability 

effects (
0≥qparameter

0≤qparameter ).   
The qualitative analysis of the offered approximated solution allows to describe the effect of a 

meniscus of a liquid on the border "liquid - capillary".   The angle of the meniscus can be both 
positive, and negative depending on  the adhesive module of pair "liquid - capillary". 
 
3.4.4 On the concept of quantum-mechanical modeling  

Let's present the brief summary of results received in the previous report  (Annual report 2004, 
Intermediate Report for 10 Quarter) within the framework of quantum-mechanical modeling. We shall try to 
formulate some conclusions also. 

Let the potential of atom interaction is . Here )(rU r  - is distance from the center of atom up to some 
point in which is placed the sampling body, taking up from the atom some attractive (repulsive) forceσ : 

)()( rUr ′=σ . 
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Characteristics of the material properties constructed on the chosen class of potentials, are reduced to the 
following: 
1. The "Equilibrium" distance  between two identical atoms is determined as distance on which force of 
interaction is equal to zero: 

0r

0)()( 00 =′= rUrσ  
2. The "Limiting" distance  between two identical atoms is determined as distance on which force of 
interaction is maximal: 

cr

0)()( =′′=′ сс rUrσ  
3. The modulus of elasticity E  and deformation ε   is determined as follows: 

0

0
00

)(
)(),(

r
rr

rrUrE
−

=′′= ε  

4. Breaking point сσ  and ultimate strain сε  is determined as follows: 

   c
с

сссс r
rr

rrU εεεσ =
−

==′=
0

0 )(
)(),(  And    )1(0 cc rr ε+=  

Thus, any potential which has one local minimum and one backoff point basically is suitable for the description 
of interaction of pair atoms. 
 
5.  Potentials define the nonlinear dependences for constitutive equations: 

ccc EE εεσεεεσ )(,)()( ==  
So, the following relations can be found 

))()(()(
0

0
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c

c E
EE

ε
εε

σ
ε

σ
σ

= ,  or )]())([()()(
0

0

cc

c

c E
EE

ε
εε

σ
ε

σ
σ

=  

Thus, we  can use parameter 
c

c

E
q

ε
σ

0

= , which is the dimensionless parameter of the modelled medium. It may 

be that this factor is individual for every medium. 
6. At last  is additional macroparameter of medium, which can be treated as depths of a potential 

pit which size can be connected with energy of destruction or temperature of fusion (or other phase transition).  
0UUh c −=

  Thus, it is possible to determine five macroparameters of modeled medias hErr cc ,,,,0 σ . 

In the previous report it was offered four base macroparameters of medium 
The analysis of various potentials is reduced to the analysis of conformity between parameters of potentials and 
macroparameters of medium.  
 
Brief analysis of potencials 
We propose to use the method of continuum mechanics. The brief analysis of the set up concept of the one-
dimensional case (the Annual report for 2004) shows: 
1) The classical theory of elasticity cannot describe behaviour of nanostructures as determines elastic 

properties of medium in only one parameter E . In this theory there is no description of scale effects, there is 
no characteristic scale  - equilibrium distance.  0r

2) The theory of mediums with kept dislocations (see the classification given in section 2.1. of the present 
report) can describe properties of nanostructures only about a point of equilibrium position. It determines 
elastic properties of medium with half set of necessary parameters: . These parameters can be 

connected with parameters of the chosen potential . However the theory of mediums with kept 

dislocations (Papkovich-Cosserat mediums) basically cannot to model a microcrack nucleation in a vicinity 
of breaking point destruction. 

EC,

Er ,0
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3) The Saint-Venant theory of the medium basically is minimally complete theory, which  takes into account 
all necessary properties of a material. Really, it contains three groups of parameters of the different 
dimension distinguished on an even degree of length. They can be connected with corresponding modules 
of elasticity and strength. 

Here brief description of potentials is given within the framework of the suggested concept. It was used the 
determination of formal properties of the researched medium ccc UUErr ,,,,, 00 σ  , which is reduced to two 

groups of ratios: 

00 )( UrU =  0)( 0 =′ rU , 
0

0 )(
r
ErU =′′  

and  cс UrU =)( cсrU σ=′ )( , 0)( =′′ сrU  

The first group concerns to behaviour of a material about a point of equilibrium position  

(parameters ). The second group concerns to behaviour of a material in about a point of limiting state 

(parameters

0r

00 ,, UEr

сr ccc Ur ,,σ ).  

Potentials 
1. Morse’s Potential. Morse’s potential contains four formal parameters  and looks like:  

 
2121 ,,, aaAA

rara eAeArU 21
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According to the conception of the modelled medium the four macroparameters cc Err σ,,,0 are expressed 

through four parameters of the modelling potential .  Thus, macroparameters of medium are 
independent.  In this respect Morse’s potential is quite coordinated and has sufficient number of internal 
parameters. However one more parameter  of medium  is dependent with specified in four parameters 

2121 ,,, aaAA

h

cc Err σ,,,0  of medium. This fact can be related to disadvantages of Morse’s potential. Besides potentials of 

this class are non-singular  and  contradict  to principle of indetermining.  
The remark .  Morse’s potential was used in [6](P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, 
2002 and P. Zhang, Y. Huang, H Gao, R.c. Hwang, 2002) for modelling of the Young module of single-wall 
nanotubes. The following potential was used: 
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The calculations which have been lead for values of parameters of potential, the data in (P. Zhang, Y. Huang, 
P.H. Geubelle, P.A. Klein, K.C. Hwang, 2002) shows, that limiting deformation achieves 35.75 %. On the other 
hand relation of the module of elasticity  to the limiting stresses 0E cσ  is equal approximately 7.62. Such 

relation is typical of rigid materials with small limiting deformation. In the mentioned works [6,7] it is 
underlined that fact, that limiting deformations can achieve great values сε  (more than 50 %). We account that 

the nanotube as macro-object, probably, has rather small limiting deformations.  
2. Lennarda-Johnson's potential.  
Lennarda-Johnson's potential also has been considered earlier. It contains only two formal parameters  and looks 

like: .   12
2

6
1)( −− += rArArU

It was established that Lenarda-Johnson's potential is not well. In result, macroparameters of modelled 
mediums cannot be independent. After obvious calculations it is possible to receive the following relations for 
macroparameters of medium at use of Lenarda-Johnson's potential: 
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The simplicity and singular properties concern to advantages of Lenarda-Johnson's potential. 
 
3.  Papkovich’s Potentials. 
The new Papkovich’s Potentials has been offered based on the our investigations (Lurie S, Belov P, Volkov-
Bogorodsky D, Tuchkova N.  2003; Lurie S, Belov P, Volkov-Bogorodsky D, 2003)  Papkovich’s Potential has 

three formal parameters     and looks like:  a 21 , AA
r

eA
r

ArU
ar−

+= 21
1)( .  Note, that for Papkovich’s 

potential macro-parameter of the limit strength сσ connects rigidly with Young’s modulus E  for the 

Papkovich’s potential. Thus using Papkovich’s potential we can realize the prognosis of the macro-properties of 
the continuum. On the other hand using the macro-properties of the continuum we can find the parameters of the 
Papkovich’s potential( are known).  Err c ,,0

The Papkovich’s potential  has the singularity in the zero point( ).  In this sense Papkovich’s potential is 
better then Morse’s potential. 

0→r

 
4.  The combined potential. 
In the given section the new potential, which combines positive properties of the Morse’s potential and 
Lennarda-Johnson's potential, is offered. Let's consider a linear combination of the Morse’s potential and 
Lennarda-Johnson's potential. We shall take into account their advantage properties and we shall write the 
following equations for definition of the model parameters:  
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The system of four parameters of potential  can be found from four macroparameters of the 

modelled mediums 
2130 ,,, aaAA

TEr cc ,,, 0σ  

Conclusions. The offered new potential has the following advantages: 
-This potential is singular; 
-The combined potential takes into account and cohesion interactions and van der Waals interactions; 
-This potential has enough number of the internal parameters which provide the common form of  potential and 
allow to consider the macroparameters of medium as independent. 
-Its weakness is the following: using the combined potential we must solve the nonlinear equations to find the 
parameters of potential from the macroparameters of the medium. 
Comparing of the potencials.    

Let’s compare the dependences )/(/)( cc ForF εεσσεσ ==  for the Lennarda-Johnson's potential, 

Morse’s Potencial and Papkovich’s Potentials.    
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      Fig. 3.3. 
 
Results of comparison of the curves resulted on figure 3.3 show, that compared potentials are actually 
equivalent at modelling classical modules of elasticity of the mediums. Moreover, it is possible to show, that we 
can consider the various potentials as equivalent potentials for calculation of effective Young modules of the 
researched objects if  we can provide equality of characteristics cc σε , .   Note that as was reported the 

ultimate deformations respected to different potential are differ because considered potentials are not common 
enough  and don’t allow  modeled the ultimate characteristics independently.  We must take into account this 

fact. Using the equation   we can conclude that parameter 
c

cE
q

σ
ε0=  is  almost the same for mention above  

potentials.  Then we can receive the approximate estimation of the stiffness (Young modulus) for Morse’s 
potential and Lennarda-Johnson's potential.  Let’s consider Morse’s potential 
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β
β . We will use the  values of parameters of potential, the data in [P. 

Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, 2002]:  ,  ,  , 

, .  Taking into account Conception it can be found  that .  

Then we have  and 

eVD e 325.6= 29.1=S 115 −= nmβ

nmR e 1315.0= nmr 1315.00 = 2)(
00 2 βeDrE =

nmeVE /3740 ≈  %. 35.75≈cε  

Assume now that ultimate stresse cσ  is the same for Morse’s potential and Lennarda-Johnson's potential.  Then 

we can find MorsecJLenc EE )()( 0_0 εε = .  Taking into account that  

36.0)(,1.0)( 0_ ≈≈ MorsecJLenc Eand εε  we can establish that  

Morse
JLenc

Morsec
JLen EE )(

)(
)(

)( 0
_

_0 ε
ε

=   or   nmEVEE MorseJLen /1346)(6.3)( 0_0 ≈≈  

Effective modulus of elasticity for nanostructure 
On the preliminary report (Intermediate Technical Report (2004), quarter 10)  the procedure of the 
determination of the strain energy, which is taking into account interatomic interactions was proposed.  
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On the base of this procedure the effective modulus of elasticity for nanostructure can be calculated. Let us 
consider  the fragment of carbon nanotubes(see Figure 3.4b ). The  beam elements in such structure has two type 

elements  with length equal to  and  with length equal 0r 30r . 

The modulus of rods of different lengths essentially differ due to nonlinear character of atomic interaction. 
Modulus of rods with length equal to  are calculated according to the offered concept of potentials using the 

following formulas . Note, that for the rods with length equal to 

0r

000 )( rrUE ′′= 30r  we can not use  the 

analogies formulas 3)3( 003 rrUE ′′= . Really let’s consider Morse’s potential and Lennarda-Johnson's 

potential. Figure show the distribution of the relative stresses (to  ultimate stresses) from deformation.  So, to 

receive the rigidity of the   rods with length equal to 30r  we must take  the secant moduli from the 

dependences Figure 3.4b.  
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Let’s will use the one dimension simplified model  for estimation of the effective rigidity of the nanotube. Then, 
we can establish effective rigidity for the equivalent fragment with the length equal  3 : 0r

0132
33

reff EE
+

=  

This value is upper bound for the rigidity  of the nanotube. To find the value of the modulus we mast take into 
aacount the width of the elementary atomic layer nm335,0≈δ  [Zhang P., Huang Y., Geubelle P.H., Klein 
P.A., Hwang K.C. 2002].  
If you want to make more exact calculations we can specify the calculating scheme. For more full account of 
interactions it is offered to consider atomic structure in the cell as generally statically indeterminate truss. Then  

to findthe rigidity of the rods with length equal to 30r  we must take  the secant moduli from the dependences 

Figure 3.4b.  
Conclusions. 
Preliminary conclusions are reduced to the following: 
1. The various potentials  can be used for modelling of the properties of a concrete material (it can be achieve 

using the appropriate choice of parameters of potential). Equivalence of  potentials DON’T takes place for 
definition integral characteristics (STIFFNESS) in a vicinity of a "equilibrium" condition. 

2. Using of the potentials with small number of the parameters is equivalent to the assumption of the some 
correlation between strength both limiting deformation and Young module.  

3. The strength macroparameters of the mediums can be connected to additional parameters, such as 
temperatures of phase transitions. It is important to generalize the conception on a dynamic case. In the 
considered cases of modelling it was considered, that kinetic energy of the particles is small in comparison 
with potential energy of their interaction. 

In conclusion we shall note, that significant interest represents the analysis of connections between 
macroparameters of the concrete materials, which can be done using the known tabulared data for one-nuclear 
materials (metals). Comparison of these dates with theoretical equations  will allow estimating area of 
applicability of the potentials. 
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3.5. DEVELOPMENT OF NUMERICAL METHODS FOR MODELLING MEDIA WITH 
INCLUSIONS. 
 In this part are presented results on asymptotic homogenization of system of the moment cohesion equations and 
the formula for effective characteristics of composite materials with the periodic microstructure taking into account local 
effects near boundary of microinclusions. Also are presented the summary of results on development of algorithm of 
block analytical-numerical method for spatial moment cohesion problems and some numerical results confirming a 
correctness of the algorithm. 

  
3.5.1.Homogenization of the system of the equations of moment cohesion. 
 

Let's give in brief the basic results on asymptotic homogenization of the system of the fourth order equations of 
the moment cohesion with periodic fast oscillating coefficients [Bakhvalov N.S., Panasenko G.P. 1989; Bensoussan A, 
Lions JL, Papanicolau G. 1978] that corresponds to a technique of definition of effective characteristics of media with 
periodic microinclusions (of the spheroidal form) with the account of local effects near the interphase layer. 

The technique of homogenization is based on a method of  “many scales” according to which parallel with slow 
variables x  are entered fast variables 1 xζ ε −= , and system of the equations of moment cohesion rewrites in the form: 

2

1 ( ; ) ( ) 0C R F x
C

ζ
ε −− + =

r r
L L ,       2( ; ) ( ) ( ) 0C kj

k j

RR A C R
x x

ζ ζ ε ζ−
⎛ ⎞∂ ∂

r

≡ − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

r r
L ,  (3.27) 

1 xζ ε −= ,  1 2 3( , , )x x x x= , 

where ε  is the typical size of microinclusions (see Fig. 3.4), ( )kjA ζ  are piecewise-constant matrix of Lame factors in a 

media-matrix and in periodically located microinclusions, ( ) ( ) 2 ( )kjpq pq kj kp jqA ζ λ ζ δ δ μ ζ δ δ= + , ( )C ζ  is a parameter 

of the cohesion field, determined by the width  of an interphase layer, 0l
2
0( ) ( )C lζ μ ζ= ; ( ) mμ ζ μ= , ( ) mλ ζ λ=  in a 

matrix ( ) fμ ζ μ= , ( ) fλ ζ λ=  in inclusion.  

 

 

 Fig. 3.4. 

  Asymptotic decomposition for the solution of (3.27) is searched as formal asymptotic expansions on degrees of 
geometrical parameter ε , which is the period of repeated microinclusions:   
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l i
i

l i i i
R x Nζ ε ζ

≥ =

=∑ ∑
K

r r
D V x ,                                                (3.28) 

here  is the solution of averaging operator (slow function), ( )V x
r

( )iN ζ  are the matrix functions being consecutive 
solutions of a chain of problems on a cell of periodicity with inclusion (fast functions, periodic with the period 1), i  is 

multiindex, ( )iD V x
r

 are every possible derivatives of the order  on slow variables.  l

In decomposition (3.28) slow and fast variables are divided. Matrix functions ( )iN ζ  describe local behaviour of 

the solution near microinclusions, the vector function ( )V x
r

 describes global behaviour of the solution and corresponds 
to homogenized media with constant factors.  

The equations for ( )iN ζ  and the average equation for ( )V x
r

 are received after substitution (3.28) in (3.27), 
applications of the formula of differentiation of the composite function dependent on slow and fast variables,   

 1( , )x
f fD f x
x

ζ ε
ζ

−∂ ∂
= +
∂ ∂

, 

and equating of members with identical degrees lε  in transformed formal asymptotic expansion to zero.  

The most important are two first members in decomposition (3.28): 

( )( , ) ( ) ( )l
l

V xR x V x N
x

ζ ε ζ ∂
≈ +

∂

r
r r

,         
2 ( )ˆ ( ) 0kj

k j

V xA F x
x x

∂
+ =

∂ ∂

r
r

,                          (3.29) 

where  are the constant matrix factors corresponding to the homogenized elastic media (generally anisotropic), 

calculated through periodic matrix functions 

ˆ
kjA

( )lN ζ  on the formula of averaging on a cell of periodicity G  (see 
[Bakhvalov N.S., Panasenko G.P. 1989]): 

( ) ( )ˆ ( ) ( ) ( )j
kj kj kl kl

l l

N H
A A A A jζ ζ

ζ ζ ζ
ζ ζ

∂ ∂
= + +

∂ ∂
,                                    (3.30) 

1 ( )j jH
C

= − L N ,            1( ) ( )
mes(G) G

f f dζ ζ ζ= ∫ .                              (3.31) 

Asymptotic approximation (3.29) describes in the first order on ε  strain-stress state of the considered 
heterogeneous media with periodic microinclusions with the account of local effects. Matrix functions of fast variables 

( )lN ζ  are defined by the equations on a cell of periodicity (Fig. 3.2) with a contact conjugate condition on surface of 
inclusion: 

( ) 0C l lN Eζ+ =L L ,       [ ] [( ) ( ) ( ) 0l
l n l l l

NN M N P N E
n

ζ
⎡ ⎤∂ ⎡ ⎤= = = +⎢ ⎥ ⎣ ⎦∂⎣ ⎦

] = ,                   (3.32) 

where  E is a unit matrix,  is a vector of an external normal to a surface of inclusion. The auxiliary problem (3.32) is 
reduced to a homogeneous problem of moment cohesion on a cell of periodicity with inclusion and with conditions of 
periodic jump along directions 

nr

x ,  or . y z

 In the formula for homogenized factors (3.30) matrix function ( )jH ζ  represents a cohesion component of the 

general field of displacements, and function ( ) ( )j jN Hζ ζ+  is a classical component of the general field of 
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displacements. Thus, the formula of averaging in a problem of moment cohesion coincides with the classical formula of 
averaging in the theory of elasticity, but a classical component of the general field of displacements in problems of 
moment cohesion will differ from displacements in the classical theory of elasticity because of action of a cohesion field 
caused by presence of an interphase layer.  
  

       
Fig. 3.5. 

 
 Thus, the problem (3.32) is the basic in the theory of asymptotic homogenization of system of the equations of 
moment cohesion, and development of effective numerical-analytical methods is of interest for the solving of these 
problems. Also is of interest development of effective numerical methods for calculation of averaging characteristics 
(3.30), (3.31) of periodic media with microinclusions with account of  local effects. For previous period within the 
framework of these tasks just development of such method for a problem (3.32) was carried out on the basis of a block 
analytic-numerical method of multipoles [Vlasov V.I., Volkov  D.B. 1995; Vlasov V.I., Volkov D.B. 1996; Vlasov V.I., 
Volkov-Bogorodsky D.B ; Volkov-Bogorodsky D.B. 2000; Volkov-Bogorodsky D.B. 2001]. 
 The problem (3.32) can be considered also as independent on a homogenization method problem of testing of a 
sample of a composite material with inclusions under special loading conditions. 

Energy of strain-stress state of cell  in a problem of spatial moment cohesion determined through components 

of strain tensor of displacements 

G

( )ij Rε
r

 and a vector of elastic rotations 1 2 rot Rω =
rr

 in the following kind: 
2 2
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On the boundary between two phases both components of the general field of displacements interact among 
themselves in such a manner that satisfied four conditions:  

( ) ( ) ( ) 0n
RR M R P R
n

⎡ ⎤∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂⎣ ⎦
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, 

where  
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∂ ∂

r r r r
r r rr ,         ( ) kj k
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Up U A n
ζ

∂
=

∂

r
rr , 

 ( )p U
rr  are classical forces on a surface of inclusion from a classical component of the general field of displacements, sr  

and τr  are two orthogonal directions in a tangent plane on a surface of inclusion, 
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where { }ijkЭ  is Somilliana tensor, accepting value 1± , depending on even or odd permutation of indexes { }ijk . 

 
3.5.2.The summary of results. 
 

The basic stages in development of a block analytic-numerical method of nultipoles for the problems of moment 
cohesion were stated during performance of a work and reflected in the previous reports. We shall result in brief the 
summary of the basic results. 

 It was performed several general schemes of a block method of multipoles, and in a final variant it has been 
reserved as the most convenient scheme of dividing initial domain “in a joint” for construction system of blocks. This 
scheme assumes dividing of initial domain kG = ∪ Β  into system of the blocks { }kΒ  crossed among themselves only 

on the boundary: . These blocks are simply connected subdomains of G  inside which the solution of 
homogeneous Helmholtz equation is searched as expansions  

k lΒ ∩Β =∅ k l≠

0
0 0

( ) ( ) (
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nm n nm n

n m
P a P P b P

∞

= =

⎡ ⎤Φ = Φ − + Φ −⎣ ⎦∑∑ 0 )P                                        (3.33) 

on system of special functions  (see [5]), similar to the polynomials having singularities in infinity point: m
nΦ
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where  are modified Bessel functions of the first kind [Bateman H., Erdelyi A. 1973] . ( )mI t ir e x i yϕ = +

For block structure is used dividing spatial area on tetrahedral blocks (see an example on Fig. 3.6): 

      
Fig. 3.6. 

 
At that curvature of spheroidal inclusion is taken into account, i.e. tetrahedral blocks adjoining to boundary of inclusion 
are replaced during solution of the problem with curvilinear tetrahedrons. 

For plane domains is used splitting of computation area into system of elementary triangles or quadrangles, 
without presentation of strict requirements on their form and the size (see Fig. 3.7). Thus curvature of inclusions also is 
taken into account. 
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Fig. 3.7. 
Every elementary tetrahedron, triangle or a quadrangle is used as the separate block  in a block analytical-numerical 
method of multipoles.  

kΒ

  Connection between the general displacements and the auxiliary potentials satisfying Laplace or Helmholtz 
equations is established by means of general Neuber-Papkovich type representation. 

 It has been proved that the field of the displacements, submitting to the non-uniform equation ( )C u F=
rrL , can be 

uniquely represented through two coordinated among themselves vector potentials, satisfying to Helmholtz equation: 

2 ( ) ( ) ( )Cf P f P F
μ

∇ − =
r r r

P ,                                                      (3.35) 

2 * *( ) ( ) ( )
2

Cf P f P F
μ λ

∇ − =
+

r r r
P .                                                  (3.36) 

We will name these potentials coordinated in some point  inside domain of representation of displacements if in this 
point coincide any derivatives on variables 
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w x i y= +  and : z
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,        0 m n≤ ≤ .                 (3.37) 

The condition (3.11) uniquely defines potential *f
r

 through potential f
r

 (or vice versa). 

Theorem 1. Any solution of the cohesion field equation ( )C u F=
rrL  can be uniquely represented as  

*1 1( ) ( ) div ( ) ( )u P f P f P f P
Cμ

⎡= + ∇ −⎣
r rr ⎤⎦

r
                                          (3.38) 

through two vector potentials f
r

 and *f
r

, satisfying Helmholtz equation (3.35), (3.36), and coordinated among 
themselves by a condition (3.37).  

From conditions (3.37) in particular follows, that * ( ) ( )f P f P→
r r

 at ; it can be show, that for solution of 

the homogeneous equation  the following property is carried out  

0C →

( ) 0C u =
rL

*( ) ( ) ( )div
4(1 )

f P f P r f P
C ν

⎡ ⎤−
→⎢ ⎥ −⎣ ⎦

r r rr

,      . 0C →

Thus, from representation (3.38) at  follows representation for a classical component  of the general field of 

the displacements, satisfying to the homogeneous equation of classical theory of elasticity 

0C → ( )U P
r

( ) 0U =
v

L . It is so-called 
Neuber-Papkovich representation [Novazki V. 1975] for displacements in the static theory of elasticity: 
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μ μ ν
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r rr r , 

where  is a radius-vector to the point  from the beginning of coordinates, ( , , )r x y z=
r P 0f

r
 is a harmonious vector, 0r f

rr  
is a scalar product of two vectors.  

Thus, the solution of the homogeneous equation of spatial moment cohesion is reduced to a finding of the vector 
potentials satisfying Laplace or Helmholtz equations. These potentials are used in a block analytical-numerical method 
and are represented as decomposition (3.33), (3.34). 
 The representation (3.33), (3.34) is analogue of Taylor series for solution of the equation (3.35) or (3.36), 
because it strong satisfies to Helmholtz equation, and its corfficirnts can be calculated with the help of differentiation on 
variables  and . z w x i y= +

 
Theorem 2. Any solution of the equation (3.35) can be represented in some vicinity of a point 0P G∈  as 

convergent series (3.33 (3.34), and coefficients  and  are calculated with the help of differentiation of the 

solution Φ  in a point :  
nma nmb
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− ∂ ∂
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nm m n m
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m n m w z −

∂ Φ
=

− ∂ ∂ 0 0nbb ,     = . 

 
  Theorems 1 and 2 are theoretical basis of a block method of multipoles in application to the solution of a 
problem (3.32). As basic system of functions the system of multipoles (3.34) can be applied. From the theorem 2 follows 
completeness of this system of functions.  

Conjunction of local representations in blocks and the satisfaction to conditions (3.32) on boundary of inclusion 
was carried out by means of system of functional of the least squares method simultaneously sewing functions and its 
normal derivatives on boundary between blocks. The condition of functional minimization is realized as block system of 
the equations for a finding of unknown coefficients in decomposition (3.33). 

Periodic conditions for a problem (3.32) represent a special kind of loading, corresponding to a uniform 
stretching of a sample in the certain direction, for example in direction of an axis x : 

 
( , , ) ( , , ) xu x L y z u x y z e+ = +

r r r ,   ( , , ) ( , , )u x y H z u x y z+ =
r r ,   ( , , ) ( , , )u x y z W u x y z+ =

r r ,        (3.39) 
 

where ,  and W  are accordingly the sizes of a parallelepiped in a directionL H x ,  and , y z xer  is  basis vector of axes 
x . To the boundary conditions (3.39) the following functional of square-law residual are correspondent for local 
solutions in blocks: 

22
22

2 2
2 2

( )( )
( )( )

min
kk

k lk l

k l k l
k j x k j L SL S

l l L SL S

U U u uU U e u u
n n n n

+ − + − ∂ ∂ ∂ ∂
− − + − + − + − =

∂ ∂ ∂ ∂∑ ∑
r r r rr r r r r , 

22

22

2 2
2 2

( )( )
( )( )

min
k lk l

jj

j jk k
k l k l L SL S

l lL SL S

U uU u U U u u
n n n n

+ +− −∂ ∂∂ ∂
− + − + − + −

∂ ∂ ∂ ∂ ∑ ∑
r r r r r r r r

= ; 

here  and kS jS  are parallel boundaries of blocks kΒ  and jΒ , connected among themselves by a condition of parallel 

transposition along a coordinate axis x ; kU +
r

, ku +r  and jU −
r

, ju −r  are corresponding values of local functions on 

boundaries  and kS jS . It is supposed, that in case of periodic loading block system of all sample meets the requirement, 
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that the parallel sides of a parallelepiped are divided by boundary blocks so, that to each element  will be 

corresponding a parallel element 
kS

jS . 

  Minimization of all functiomal system results in block system of the linear equations for a finding of unknown 
coefficients in the solution: 
 

k k kl l k
l

A X T X H+ =∑
r r r

N,      .                                           (3.40) 1, 2,k = K

For the solution of system of the equations (3.40) it was applied two methods – direct and iterative. The first is 
block realization of a Gauss elimination method with the direct inversing on each step of exception of a diagonal matrix 

 with the help of Gauss-Jordan method with a full pivoting. The second method is the iterative scheme of GMRES 
with preconditioning, constructed by the incomplete triangular decomposition ILUT. 

kA

Calculation of residual norm for required magnitude in functional was carried out by means of Gaussian 
quadratures of the high order adapted for a curvilinear surface of spheroidal inclusions. 
 
3.5.3. Another systems of basic functions. 

Besides system of multipoles (3.34) it can be used other systems of basic functions. Below deduction of 
parametrical family of multipoles for the solution of Helmholtz equation is given. This family contains as a special case 
system (3.34) and can be used instead (3.34) for achieving more quality of approximation. This result was not included in 
the previous reports. 

The system is entered on the basis of the analysis of initial Helmholtz equation in complex variables w x i y= + , 
w x i y= −  and : z

2 2
2 2 2

24
w w z

κ ∂ Φ ∂ Φ
∇ Φ − Φ = + − Φ =

∂ ∂ ∂
0.κ                                                  (3.41) 

The system of multipoles is entered with the help of separation of complex variables , w w  and : z
( ) ( , , ) ( , ) ( )p p

p

P w w z w w UφΦ = Φ =∑ z .                                              (3.42) 

Substitution (3.42) in (3.41) allows to group members of turning out formal series as follows: 

( )
2

2 2 2 '' 2
1 2

( , )
( ) ( ) 4 ( , ) ( ) ( , ) ( ) ( )p

p p p p p
p

w w
P P w w U z w w U z U z

w w
φ

κ κ φ φ
⎧ ⎫⎛ ⎞∂⎪ ⎪∇ Φ − Φ = − + −⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭

∑ κ

2

. 

In this representation the free constant  in the equation is replaced with the sum of two any constants 2κ 2 2
1 2κ κ κ= + . 

The first term in the received sum corresponds to a case when exponentially decreasing members communicate with a 
plane, orthogonal to the chosen direction. The second term corresponds to a case exponentially decreasing members 
communicate directly with the chosen direction (i.e. with an axis ).  z

Let's assume the following: 
1)  is any function; 0 ( )U z

2) 0 ( , )w wφ  is the decision of plane Helmholtz  equation, 
2

20
1 0

( , )4 (w w w w
w w
φ

κ φ
∂

− =
∂ ∂

, ) 0 ; 

3) all other members satisfy to conditions: 

( )
2

2 ''
1 1 1 2

( , )
4 ( , ) ( ) ( , ) ( )p

p p p p p

w w
w w U z w w U z U z

w w
φ

κ φ φ κ− − −

⎛ ⎞∂
− + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

2
1( ) 0= . 
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Then members of series (3.42) take to zero after a regrouping, and the common solution of Helmholtz equation is 
received as formal series (3.42) with two sequences of unknown functions ( , )p w wφ  and  connected among 

themselves the recurrent correlations which are obraining as a result of performance of above formulated conditions: 

( )pU z

2
2
1 1

( , )
4 ( , ) (p

p p

w w
w w w w

w w
φ

κ φ φ −

∂
− −

∂ ∂
, ) 0=

=

,                                            (3.43) 

'' 2
2 1( ) ( ) ( ) 0p p pU z U z U zκ +− + .                                                      (3.44) 

 
A formal series (3.42) – (3.44) represents some class of the common solutions of the equation (3.41), 

parametrically dependent on parameter , and based on continuation of solution of Helmholtz equation from a plane on 

all space along an axis ; function  sets a way of such continuation. 
1κ

z 0 ( )U z
The concrete type of the common solution (3.42) is defined by additional reasons. An origin point for the 

equations (3.43), (3.44) is any function  and the solution of plane equation 0 ( )U z 0 ( , )w wφ . We put 0 ( , )w wφ  in the form: 
2

0 ( , ) ( )w w w F wwμ
μφ = 1κ ,                                                           (3.45) 

0
( )

4 !( 1)

k

k
k k

tF t
kμ μ

∞

=

=
+∑ ,                                                          (3.46) 

where  is Pokhgammer symbol [Bateman H., Erdelyi A. 1973]. This is the elementary 

solution of plane Helmholtz equation in the cylindrical coordinates, similar to power function w

( ) ( 1) ( 1)ka a a a k= + + −K

μ  (which we name a 
plane multipole of Laplace equation), and it is expressed through modified Bessel function: 

0 0 1( , ) ( , ) ( ) iw w r A I r e μϕ
μ μφ φ ϕ κ= = ,           

2

1

2 ( 1)!A
μ

μ μ

μ
κ

+
= .  

All other functions ( , )p w wφ  of the recurrent equation (3.43) also can be expressed through (3.46): 

( ) 2
1

( 1)( , ) ( , ) ( )
4 ! ( 1)

p p p

p p pp
p

w ww w w w F ww
p

μ
μ

μφ φ κ
μ

+

+
−

= =
+

.                                  (3.47) 

Recurrent system of the equations (3.44) is resolved as 2( ) ( ) z
p pU z u z e κ−= , where  are polynomials of a 

decreasing degree connected by recurrent correlations: 

( )pu z

2( ) ( ) z
p pU z u z e κ−= ,    1( ) ( ) 2 ( )p p pu z u z u z2κ+ ′′ ′= − .                            (3.48) 

  The choice of the remaining unknown function  is connected with definition of the common solution (3.42) 

– (3.44) in a limiting case . If we believe 
0 ( )u z

0κ = 0 ( )u z zν μ−=  at the whole non-negative ν μ− , the system of functions 

(3.42) – (3.44) at  transforms in system of spherical functions, i.e. in system of electrostatic multipoles [Morse 

P.M., Feshbach H. 1953]. 
1,2 0κ →

Thus, we have obtained (at the whole non-negative ν μ− ) required system of functions: 

22
1 2 1

0

( 1)( ) ( , , ) ( ) ( )
4 ! ( 1)

p p p
z

p pp
p p

w wP P F ww u z e
p

μν μ
κμ

ν μκ κ κ
μ

+−
−

+
=

−
Φ = Φ =

+∑ ,                 (3.49) 

1 2( ) ( ) 2 ( )p p pu z u z u zκ+ ′′ ′= − ,     0 ( )u z zν μ−= ,    0kν μ− = ≥ .                         (3.50) 
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At  representation (3.49), (3.50) transforms (at the whole non-negative 1,2 0κ → ν  и μ ) in representation for system of 

the normalized spherical functions (cos ) iB R P eν μ
μ ν θ− μϕ , where 2 (B μ

μ μ− 1)= Γ + ,  is Euler's function, Γ

2 2 2R x y z= + + . 

Directly differentiating (3.49) and taking into account a relationship 1( ) ( ) 4( 1)F t F tμ μ μ+′ = − + , it is easy to 

make sure of differential recurrent correlations: 

1 2( )
z

μ
μ μν
ν νν μ κ−

∂Φ
= − Φ − Φ

∂
,         1( )

z

μ
μν
νν μ −

∂Φ
= − Φ

∂
,      0μ ≠ ,                          (3.51) 

1 2 1
1 1 1 2( ) ( 1) 2( )
4( 1)w

μ μ μ
ν ν νν μ ν μ κ ν μ κ

μ

+ +
− +∂Φ − − − Φ − Φ − − Φ

= −
∂ +

1μ
ν
+

,                          (3.52) 

Correlations (3.51) – (3.52) allow analytically differentiating of local representations of solution (3.33).  
 
3.5.4. Three-dimensional, plane and double plane problems of moment cohesion. 

Because the initial model is enough difficult object, it is a spatial system of the equations of 4-th order, and then 
debugging of a method was carried out on more simple models. It is possible to form hierarchy of these models, 
consistently simplifying initial model. They are spatial model of moment cohesion, plane model and so-called double 
plane model of moment cohesion. 

It is necessary to note, that, despite of simplifications, all these models are of interest for research of properties of 
composite materials with local effects, and can be practically applied for calculation of effective characteristics of 
materials with microinclusions. 

The initial spatial model is represented by the vector equation 
1 ( ) 0C R F
C

− + =
r r

L L 2( ) ( ) divC,    R R R C Rμ μ λ= ∇ + + ∇ −
r r r r

L ,                      (3.53) 

with junction conditions on a surface of inclusion 

( ) ( )
( )

( ) ( )
( ) ( ) 0s

n

M R M RRR M R p U
n s

τ

τ

⎡ ⎤∂ ∂⎡ ⎤∂⎡ ⎤ ⎡ ⎤= = = + + =⎢⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
⎥

∂

r r r rr
r r r rr .                       (3.54) 

 The plane model is represented by a projection of spatial model in 2D. Formally it corresponds to conditions: 
, 0zR = 0z∂ ∂ = . The equation in 2D has the same form (3.53) as well as in 3D, but junction conditions (3.54) become 

simpler: 

( ) ( ) ( ) 0n
RR M R p U
n

⎡ ⎤∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂⎣ ⎦

r
r r r rr

= ;                                                 (3.55) 

into a last component are entered only surface forces of a classical component of the general field of displacements. 
It follows from the formula of representation the cohesion moments which becomes simpler in 2D as follows: 

{ }( ) ( ) ( )( ) ,n n sM R M M= −
r r

,    { }( ) ( ) ( )( ) ,s s nM R M M=
r r

, 

( ) 11 12( ) ( )n x yM R n M R n= +
r r

( ) 11 12( ) ( ),       M s y xM M R n M R n= − +
r r

, 
2

11
(2 ) ( )( ) RM R

C n
μ λ θ+ ∂

=
∂

r
r

,         
2

3
12

( )2( ) RM R
C n

ωμ ∂
= −

∂

r
r

. 

The continuity of each component ( ) ( )( ) ( ) 0n sM R M R⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
r r

 or (11) (12)( ) ( ) 0M R M R⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
r r

follows from conditions 

of a continuity of the cohesion moments ( ) ( )nM R
r r

, and the continuity of tangent derivatives on a smooth part of a contour 
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follows from here. Thus, in a plane case jump of tangent derivatives of the cohesion moments can be rejected, and on a 

surface of smooth inclusion work only classical forces ( )p U
rr . 

The double plane problem assumes the approximate description of a plane problem due to rejection of one 
components of a vector of displacements: 0yR = . Boundary conditions (3.29) are satisfied approximately (in the first 

order of accuracy). In result we receive one equation of 4-th about remaining component xR R= :  

1 0C R
C

− =L L ,        
0C C=

=L L ,    
2 2

2 2(2 )C C
x y

μ λ μ∂ ∂
= + +

∂ ∂
L − .            (3.56) 

Thus the problem breaks up to two independent problems for a classical field of displacement U  ( 0U = ) and 

for cohesion field u ( ), in composition forming full displacement 0C u =L R U u= − . On boundary of inclusion the 
approximate junction conditions are set: 

[ ] [ ] 0U u= = ,     ( ) x
U U n
n x

μ μ λ
⎡ ⎤∂ ∂

+ + =⎢ ⎥∂ ∂⎣ ⎦
0 ,    0u U

n n
⎡ ⎤∂ ∂

− =⎢ ⎥∂ ∂⎣ ⎦
. 

The transformation of coordinates ( , ) ( 2 , ) ( , )x y x yμ λ μΦ =Φ + = Φ%% % %x y%  is applied to a double plane 

problem instead of representation (3.38), which reduce the equation (3.56) to Helmholtz equation .  2 0C∇ Φ − Φ =% %

All these problems of moment cohesion have been consistently realized by a block analytical-numerical method. 
Below is represented results of testing of a spatial problem of moment cohesion for a homogeneous spatial beam with the 
sizes ,  and  (see fig. 3.8), subject to a uniaxial tension along the axis : 1L = 2H = 1W = y

( ) 0C R =
r

LL ,    ( ) 0R P
n
′∂
=

∂

r

,    ( ) ( ) 0nM R =
r r

,      ( ) ( )x yP S S± ±′∈ ∪   , 
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r

,  ( ) 0R P
n
′∂
=

∂

r

,   ( )yP S −′∈ ,     2( )R P e′ =
r r ,   ( ) 0R P

n
′∂
=

∂

r

 ,   ;     ( )yP S +′∈

here  and  accordingly the bottom and top face of a beam. The beam has been divided on 10 tetrahedral 
blocks as it is shown on fig. 3.8. The problem in the formulated statement has the analytical solution: 

( )yS − ( )yS +

( )
( ) ( )2

2 ( ) (1 ) (1 )1( ) 1
2 2 1 2 1 2

H H H y H

H H

y H e e e e e e
R y

H e H e

κ κ κ κ κ κ

κ κ

κ
κ κ

− −

−

⎡ ⎤− − − − − −
= +⎢ ⎥− − − +⎣ ⎦

y−

,      
2

Cκ
μ λ

=
+

. 

 
On fig. 3.9 the picture of convergence of a block method of multipoles is submitted at ; displacement and 

its derivative along an axis  are submitted at 
N →∞

y 1, 2, 3, 4, 5, 7N = . At 7N =  the numerical solution practically 

coincides with the analytical solution, the relative error together with the first order derivatives is equal 410− .  

 
Рис. 3.8 
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Рис. 3.9.  
 
Other numerical results have been submitted in the previous reports. In the annual report for 2002 numerical 

results for a double plane problem were submitted. Some new numerical results for a plane problem of moment cohesion 
are presented below. 

 
3.5.5. Examples of numerical calculations. 
  It is represented below comparative calculations by a block analytical-numerical method of a plane moment 
cohesion problem on a rectangular cell  with inclusion of elliptic (or, in particular, circular) form. It is of interest 
research of influence of a cohesion field determined by parameter 

L H×
2

0c C lμ 0
−= =  on distribution of tension and density of 

energy in a matrix and inclusion, and also comparison of a strain-stress state and distributions of energy in a cell for 
moment and for the classical problem, it is formally corresponds to a limiting process . The classical problem has 
been realized separately with the help of a block method of multipoles. 

0c →∞

On Fig. 3.10 distribution of density of energy in a cell is represented at different value of cohesion parameter 
( ) for inclusion of the circular form with the radius 0 100, 1000,c = ∞ 0.4R = , located in the center of a rectangular 

matrix with the sizes . It was assumed that in matrix 2L = 1.2H = 1mμ = , 0.3mν = , in inclusion 2fμ = , 0.3fν =  : 
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Fig. 3.10. 
  

Redistribution of energy between a matrix and inclusion is well visible. For a classical problem energy is concentrated 
basically in a matrix, for a modelling problem of plane moment cohesion energy is redistributed in inclusion. 

On Fig. 3.11 distribution components ( )xx Rσ
r

 and ( )yy Rσ
r

 of classical stress tensor is presented at the same 

values of cohesion parameter : 0 100, 1000,c = ∞

 

  

  
 

Fig. 3.11. 
 

Here is observed the unloading of a matrix at reduction of parameter  (i.e. at increasing width of an interphase layer 

). 
0c

0l

And at last, on Fig. 3.12 is represented distribution of the periodic function 1 ( ) ( )x xN P R P x= − , having high 

significance in the asymptotic theory of homogenization (3.29), (3.30), and function of cubic dilatation ( )Rθ
r

 at the same 
values of cohesion parameter: 
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Fig. 3.12. 
 
Changing of width of an interphase layer and effect of smoothing of the solution is well visible at increasing portion of 
cohesion field (i.e. at reduction ). 0c

On Fig. 3.13 – 3.16 picture of changing of function 1 ( )xN P  (Fig. 3.13), density of energy (Fig. 3.14), 

components of stress tensor ( )xx Rσ
r

 (Fig. 3.15) and cubic dilatation ( )Rθ
r

 (Fig. 3.16) are presented at various value of 

cohesion parameter  on a middle line {0 , 1000, 100c = ∞ 0 2, 0.6}x y< < = :  
 

 
 

Fig. 3.13. 
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Fig. 3.14. 
 
 

 
 

Fig. 3.15. 
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Fig. 3.16. 
 

On Fig. 3.17 the picture of changing of a relative part of energy in inclusion fΕ  in relation to energy in a matrix 

 (i.e. factor of energy accommodation mΕ f mη Ε Ε= ) for the same model is represented at a variation of parameter 

:  0 100 1000c = −

 
Fig. 3.17. 

 
On Fig. 3.18 changing of energy accommodation for inclusion of ellipsoidal form with semi-axis 0.2 0.8a = −  

and  is represented at a variation of geometrical parameters of inclusion. On the right half of picture change 
 is submitted at fixed , and on the left half of picture changes  at fixed 

0.2 0.5b = −
a 0.2b = b 0.2a = : 
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Fig. 3.18. 

 
For plane model of moment cohesion comparative research of distribution of density of energy and of tension 

tensor components have been carried out also at turn of inclusion inside a cell that is important for calculation of effective 
characteristics of materials with random distribution of inclusions. Results are similar already presented in the annual 
report for 2002 for a double plane problem. 

 
3.5.6. Features of the current realization of algorithm. 

Unfortunately, the current realization of a block analytic-numerical algorithm encounters some numerical 
difficulties connected to instability of the calculation. At some unsuccessful choice of norm of junction functional during 
the calculation arises, apparently, singular or close to singular block matrix resulting in loss of calculation. This feature of 
algorithm demands more attentive studying of this phenomenon and modification of algorithm of the solution of the 
block system of equations due to introduction in stages of algorithm singular decomposition of elements of a block 
matrix, in particular QR-decomposition. This feature is temporal technical difficulty, and is overcome now due to a 
variation of calculating parameters (a degree of used multipoles, parameters of norm of junction functional, geometrical 
elements of block structure), that is inconvenient for practical realization. At correct selection of parameters we receive 
actually analytical solution of a problem. 

 
3.5.7. Perspectives on the future. 

The algorithm of a block method of multipoles can be applied to more complex models of an interphase layer 
including not only cohesion, but also adhesion effects, and also to the coupled problems including thermal and 
electromagnetic processes. After working off of algorithm of a block method of multipoles, on its base special form 
functions for considered models of moment cohesion and adhesions can be constructed with the purpose of their 
application in a traditional final elements method. 
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3.6. THE DETERMINATION OF THE MATHEMATICAL MODEL PARAMETERS BASED ON 
EXPERIMENTAL DATA. 

 
In the Annual Report for 2004 the identification problem was solved on the base of the 

experimental dates [Miva M, 1978]. The solution of the problem of identification allowed us to get the 
values of the model parameters for the inter-phase layer  and . It was established that  <  for 

the both types of composite materials. Taking into consideration that the parameters  and  have 
the dimensions of length and, in fact, determine the length of the inter-phase cohesive layer in the matrix 
and in the inclusion, we can see that the values of these parameters obtained are in good agreement with 
the physical sense of the inter-phase layer. The inter-phase layer is generated in the each of phases in the 
neighborhood of the contacting zone; at that, the depth of the inter-phase layer in the matrix (the phase 
with smaller rigidity) is greater as compared to the depth of the inter-phase layer in the inclusion (the 
phase with greater rigidity). All set cohesion and adhesion type parameters were found based on the one-
dimensional statement.  

Da Ma Ma Da
1−

Da 1−
Ma

Here we consider more common problem. Dealing with problem to enforce model results to fit 
datasets and to identify physical parameters (“data assimilation problem”) we assume that we have 

experimental data. The experimental data are set of K  points with coordinates ( )1
eE , ( )2

eE , … , 

( )K
eE . Here the letter E  denote specific energy (it is equivalent to the Young’s modulus) of composite 

material. Each point corresponds to the composite. The matrixes of all these composites manufactured of 
the same material. The material of fraction is also the same. 

The considered composites are differed by the sizes of fragments particles, their shapes, locations, 
concentration. Fig. 3.19 shows the meshes of a matrix of composite (parallelepiped) with blob from 
filling agent (dark ellipsoids). 
 
 

 
Fig. 3.19 
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The problem of identification of mathematical model parameter is formulated as follows: to find the 
parameters in such a way, that the “distance” between experimental set of points with coordinates 

( )1
eE ,  ( )2

eE , … ,  ( )K
eE  and theoretical set of points to be minimum. As the “distance” between 

experimental set of points and theoretical set of points next cost function was chosen 

[∑
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d

e
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d EE
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21Φ ] ,         (3.57) 

where ,  , … ,   is the theoretical set of points obtained with the help of selected model at 

some (given) set of parameters. 

tE1
tE2

t
KE

 The proposed algorithm of the solution of the problem of identification of model parameters we 
shall illustrate on an example of one-parameter three-dimensional model. 

 To calculate the theoretical values  of specific energy of -th composite material within the 

framework of this model the obtained earlier relation will be utilized 
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In (3.58) region  is represented by join of region dG ( )mdG  of a matrix and region (  of fullerene; 

parameters  and 
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In (3.58) and everywhere below on each of recurring subscripts the summation in limits from 1 up to 3 is 
supposed. 
 The displacement field  is defined from the solution of a following boundary value 

problem (here subscript , pointing conformity to an -th composite, is pulled down). 
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 On a surface  being demarcation of fullerene and the matrix, should be equal among 

themselves to functions  and 
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and the vector Tnnnn 321 ,,= - the vector of a normal to a surface in the given point. 

On the edges ADHE  and BCGF  of parallelepiped ABCDEFGH  see fig. 3.20) the values of 
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should be fair. 

 
Fig. 3.20 

 As the parameter of considered model the magnitude of C  is selected. The cost function ( )CΦ  

from (3.57) depends on magnitude of parameter C  as explicitly (through a relation (3.58)), and implicitly 

(through a function ). ( )zyxRi ,,
The differential of the function  (variation) is determined as follows: ( )CΦ
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 As to a variation  of a function (3.59), applicable variation of parametert
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a calculus of variations are applied to its calculus [1]. After carrying out the rather complicated 
calculations it is possible to receive next form of the first variation of a functional (3.58): 
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 Allowing, that the displacement fields )(mR  and )( fR  are defined from the solution of the 
formulated above boundary value problem, the first variation of a functional (3.58) can be recorded so: 
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 Now, having computed with the help of relations (3.59), (3.60) the differential of the cost 
function , it is possible to apply any gradient method [2] (for example, method of conjugate 

gradients) for minimization of the cost function and for definition of parameter 

( )CΦ
C  of model in common 

3D case. 
 If the number of parameters of model is insignificant, it is possible to take advantage of more 
simple straight method of calculus of a gradient of a cost function ( )CΦ  with the help of formula 

( ) ( ) ( )
C

CCC
Cd
Cd

Δ
ΦΔΦΦ −+

≈         (3.61) 

and again to apply a gradient method. 
 

3.6.1. Numerical experiments. 
 The numerical experiments were carried out for different mathematical models. Here the results 
of some experiments for a rectangular cell within the framework of full statement for a plane problem of 
moment cohesion (i.e. in the assumption, that the displacement vector has two coordinates and there is no 
dependence on -coordinate) are presented.  The calculations on definition of specific energy of a 
composite were carried out with the help of the described above block analytical-numerical method of 
multipoles. 

z

    As the model parameters the cohesive parameters C  were selected:  for a matrix and 

  for fullerene. The cost function 
mC

fC ( )fm CC ,Φ  from (3.57) depends on values of these 

parameters    and . mC fC
 For debugging the parameter identification algorithm the set from several "experimental" points 
was used. The described above algorithm of the solution of the straight problem at fixed values of 

cohesive parameters arguments  and  was applied to their receiving.  mC fC

 All reduced below results are obtained for the composite on the basis of epoxy ( 41.3=mE  

GigaPa ) with fullerene from glass shot  ( 5.87=fE  GigaPa). The inclusions for all "experimental" 

points were selected in the shape of a sphere, and radius of a sphere varied. All lengths are indicated in a 
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dimensionless form. The half of length of a rectangular cell is selected as a unit of length. The specific 

energy of a composite is referred to mμ , and required parameters  and   to mC fC mμ  and fμ  

accordingly. 
 The gradient of a cost function was evaluated with the help of a straight method (3.61). 
 In the table the radiuses of spheres, coefficient of volumetric filling up and specific energy of a 
composite are indicated. 

 
The number of  
«experimental» 

Point 

1 2 3 4a 4b 

The radius of sphere-
inclusion 

0.20 0.25 0.30 0.4 0.4 

Coefficient of volumetric 
filling up 

0.0524 0.0818 0.1178 0.2094 0.2094 

Specific energy of a 
composite 

1.23204 1.30111 1.39425 1.58925 1.71573 

 
3.6.1.1. Experiment 1. 

 
 For an "experimental" point with number 4a (radius of sphere - inclusion is equal 0.4) the study 

of dependence of specific energy of a composite upon cohesive parameters   and was carried out. 

The results of these studies are introduced on fig. 3.21, where the dependence of specific energy of a 

composite upon a cohesive parameter  of fullerene is figured at a fixed value of cohesive parameter 

  of a matrix. The digits near curves indicate a value of cohesive parameter  of a matrix, at which 

one this curve is constructed. Analysis of the results of calculations, introduced on fig. 3.21, allows to 
draw a conclusion about monotonic dependence of specific energy of a composite upon on cohesive 

parameters   and . 

mC fC

fC

mC mC

mC fC
 
3.6.1.2. Experiment 2. 
 
For an "experimental" point with number 4b (radius of sphere - inclusion is equal 0.4) the specific energy 

of a composite was set . The problem consists in definition of such parameters of model 

 and , at which one the idealized (made with the aid of model) value of specific energy of a 

composite would coincide with given. For this purpose the required parameters also varied in following 

limits: , 

58925.1=e
aE

mC fC

[ ]1000,100⊂mC [ ]1000,100⊂fC . At everyone values  and   a value of a 

function 
mC fC

( ) [ ]2, e
a

t
afm EECC −=Φ ,        (3.62) 

 also was evaluated. The minimum of this function should be found. 
 The method of conjugate gradients was applied to looking up of a minimum of a function (3.62). 

It was found that the cost function (3.62) receives a minimum value at  (this point on 

fig. 3.21 and in the table is marked by the character ). On fig. 3.22 the cross-section of a surface 

500== fm CC
a
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( )fm CC ,Φ=Φ  by a plane 500=mC  is introduced, and on fig. 5 the cross-section of a surface 

( )fm CC ,Φ=Φ  by a plain 500=fC  is introduced. The figures 4, 5 demonstrate that the cost 

function has at the found values of parameters of model the brightly expressed minimum. 
 
3.6.1.3. Experiment 3. 
 
 This experiment differs from previous only by set value of specific energy of a composite 

 ("experimental" dot 4b). It was found that the cost function 71573.1=e
bE

( ) [ ]2, e
b

t
bfm EECC −=Φ

,        (3.63) 

receives a minimum value at 200== fm CC  (point b  on fig. 3.21 and in the table). On fig. 3.24 the 

cross-section of a surface ( )fm CC ,Φ=Φ  by a plain 200=mC  is presented, and on fig. 3.25 the 

cross-section  of a surface ( )fm CC ,Φ=Φ  by a plain 200=fC  is presented. The brightly 

expressed minimum of a cost function is here too observed at the received values of parameters  of model. 
 

3.6.1.4. Experiment 4. 
In this experiment as "experimental" points the points labeled in the table by 1, 2 and 3 were selected. 

Here problem consists in definition of such model parameters   and , at which one obtained 

theoretically values of specific energy for each composite would coincide with the given. The required 

parameters  and  also varied in the same limits: 

mC fC

mC fC [ ]1000,100⊂mC , . At 

everyone values of  and  a value of a function 

[ ]1000,100⊂fC

mC fC

( ) [∑
=

−⋅=
3

1

2

3
1,

d

e
d

t
dfm EECCΦ ] ,        (3.64) 

 also was evaluated. The minimum of function (3.64) should be found. 
 A conjugate gradients method was also applied to looking up of a minimum of a function 
(3ю348). It was found that the cost function (3.64) receives a minimum value at 300=mC  and  

. In this experiment also it was revealed, that the cost function  has at the retrieved values 

of model parameters the brightly expressed minimum. 

450=fC Φ

 
3.6.2. Conclusion. 
 
  The held calculations have shown, that the proposed algorithm of identifying the 
model parameters allows to retrieve cohesive parameters   and   with a high accuracy. mC fC
 

 
 

 
 

 137



 
Fig. 3.21 

 
Fig.3.22 
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Fig. 3.23 

 
Fig. 3.24 
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Fig. 3.25 

 
 
Results 
The investigations were carried out to apply the developed technique on main model. In the main model 
the displacement vector has already two components. The system of partial differential equations for the 
components is essentially more complicated. The conditions for these components on the boundary 
between matrix material and reinforcing material become noticeably complicated. The model was 
allowed to have has some parameters. For the main model the expression permitting to determine a 
precise value of a variation of a coast functional, cased by a variation of parameters is obtained. This 
expression depends both on movement vector and auxiliary functions (Lagrangian multiplicities). The 
Lagrangian multiplicities are determined from the solution of a so-called "conjugate" boundary value 
problem, the equations and boundary conditions for which one are obtained in the paper. The 
investigation both "conjugate" problem and main problem is held. The conclusion is made that the 
proposed algorithm is correct in more complicated case. 
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4. DEVELOPMENT OF MOLECULAR MODELS OF INTERPHASE LAYERS FOR 

REINFORCEMENT COMPOSITES BY DIRECT NUMERICAL MODELING. 

 

4.1. INVESTIGATION OF STRUCTURAL AND MICROMECHANICAL CHARACTERISTICS OF 

COMPOSITE “POLYMER - TECHNICAL CARBON” AT THE PHASE BORDER BY MONTE-

CARLO METHOD 

 

4.1.1. Investigation of molecular mobility at interphase layer of microcluster n-C100H202 and graphite. 

By Monte-Carlo method (Allen M.P., Tildesley D.J., 1987) (procedure of Metropolis, (Metropolis N.A., 

Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., 1953)) for canonic NVT ensemble using an 

unorthodox algorithm (Teplukhin А.V., 2004) the systems with contain two-ply fragment of graphite with size 

equal 60x61x6,8Å (2856 carbon atoms) and 48 molecules of n-alkane (n-C100H202) at temperature 450K (melt of 

polyethylene) have been investigated. Components of system (17352 atoms) have occupied the elementary 

cubic cell (rib~66 Å). Initial configuration of system has been made by replication of molecule n-C100H202 (see 

fig.4.1) 4,2 and 6 times along coordinate axis (x,y,z accordingly). General view of elementary cell before we 

start to model shows in fig.4.2. 

 

 

Figure 4.1: n-C100H202 molecule in initial configuration (volumetric and carcass models, white color are 

hydrogen atoms, gray color are carbon atoms). 

 

 
 

Figure 4.2: General outlook of elementary cell of system before modeling. 

Alteration of internal energy during computational experiment has calculate using atom-atomic potential 

functions (Poltev V.I., Shulyupina N.V., 1986) for values of intermolecular interactions and parameters of 

 143



AMBER data-base (Weiner S.J., Kollman P.A., Nguyen D.T., Case D.A., 1986) for values of self molecular 

interactions (energy of deformation of valent bonds and angles, torsion potentials). Calculations of structural 

and dynamic characteristics model system have been made by means of parallel computational technologies 

(Teplukhin А.V., 2004) on supercomputer MVC 5000 BM (Moscow). 

After accomplishment of  tests (for each of CH62 10⋅ 2 or CH3- group) by method of Monte-Carlo it is 

proved, that mass of alcanes adopted in compact form (see fig.4.3) which shows the higher local density in 

compare with the initial configuration (see fig.4.2). 

 

 

Figure 4.3: General view of elementary cell of the system after relaxation at 450K. 

 

Hydrocarbon chains have maintained predominantly collinear collocation and formed wide area with 

dense hexagonal package (as it can see for crystals of normal paraffin at temperatures close to melt temperature 

(Kitaygorodsky А.I., 1971)). 

Section of model cell by cross to chains flatness one can see in fig.4.4. Increase of local density happened 

because of decrease the size of sample in normal direction to graphite surface. This process, has leaded to crack 

of material in flatness which is normal to graphite surface direction and initialized evolution of cracks in flatness 

which are parallel to graphite (see fig.4.5). As it can see from fig.4.4 some defects in molecular package forego 

a propagation of cracks. 

 

 

Figure 4.4: Section of elementary cell of the system after relaxation at 450K. 
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a) b) 

Figure 4.5: Cracks propagation into the material at an initial (a) and a final (b) stages of relaxation. 

 

Dependence of local density CH2 or CH3– groups (ns) on distance to graphite surface has complex 

character (see fig.4.6). So, close to graphite surface a polymer layer is characterized by the high value of density 

(the first and the last peaks on the curve). It is explained by low potential energy of atomic groups, which are 

kept with graphite by means of Van-der-Waals constant. Further, it is possible to observe the area of quasi-

crystalline (hexagonal) phase (3-4 peaks) and area (~12Å) with defects. 
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Figure 4.6: Alteration of local density CH2 or CH3– groups (nc in relative units) along a normal to graphite 

surface direction. 

 

In order to calculate a dependence of motion of CH2 or CH3– groups of n-alcanes on distance to graphite 

surface the space of cell, we model, was rubricate on layers with thickness 0.5Å (around Z-coordinate) parallel 

to graphite flatness (XY-flatness). As a measure of mobility CH2 or CH3– groups we chosen the value of mean 

square displacement of center mass of carbon atoms during 5000 steps of Metropolis procedure. Mobility into 

layer (z, z+0.5) has calculated as a mean arithmetical of molecular mobility of molecules inside a given layer 

when we started to calculate. In order to enhance a reliability of results, the calculations have made in two series 

by 10 pairs of launching (the first one with calculation of mobility, but the second one without). Above method 

let us to decrease a discrepancy of data up to 20%. 
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In fig.4.7 one can see the dependence of mobility CH2 or CH3– groups (Dt) and its lateral (Dl) and normal 

(Dn) components on distance to graphite surface, calculated at temperature 450K. 
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Figure 4.7: Dependence of mobility of CH2 and CH3– groups for n-alcanes (dt) along a normal to graphite 

surface (Z-coordinate) at 450K, dl and dn are lateral and normal components. 

 

 

Unfortunately, the accuracy calculations of mobility in above batch of experiments was insufficient for 

observation of specific effects. One can to note small deceleration of mobility into the layer of immediate 

contact of polymer with graphite (area of the first and the last maximum in fig.4.7). 

 

4.1.2. Investigation of shear elasticity for molecules of n-C100H202 on the graphite surface by Monte-Carlo 

method. 

A system contained two layers fragment of graphite 60x61x6.8 A3 size (2856 carbon atoms) and 48 

molecules of n-alcane (n-C100H202) at 300K has been investigated. The components of system (17352 atoms) 

occupied an elementary cubic cell (rib size is 66A). 

As initial configuration of system it was taken the last configuration of the system, which has been 

describe in previous part of work (see part 4.1.1.). All calculations have been made in parallel algorithmic 

procedures.  

Shear deformation for fragment of system under study is realized by keeping some periodic border 

conditions superimposed on the model cell, as it follows below. 

1. The potential energy E0 has calculated for initial configuration of alcane chains: after its precursory 

relaxation at 300K. 

2. The particles of over and under contact layers for CH2 or CH3– groups, which have located inside the 

monomolecular layer of upper surface of cell or within Van-der-Waals contact with graphite surface have 

fixed. 

 146



3. Each particle (atoms of graphite belong to caudal contact layer) is dislocated in parallel to graphite surface 

(for example, along the coordinate axis X; axis Z coincides with direction which is perpendicular to graphite 

surface). Value and direction of displacement of particles is qualified by value of its z-coordinate 

⎜
⎜
⎜
⎜

⎝

⎛

<
−

≥
−

=Δ
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here d is the distance between middle surfaces of contact layer, and s=0.1А is the maximum value of 

displacement for one step of deformation. 

4. After that the relaxation of system under consideration at 300K arises. Standard procedure of Metropolis is 

employed only to particles which did not get at contact groups (~10 tests of Monte-Carlo method for each 

СН2 or СН3-groups). 

5. It is calculated the potential energy of system after regular shear and relaxation E. Shear stress of a system 

during deformation one can evaluate as P=(Е-Е0)/V, where V is the volume of cell. Value (relative) 

deformation at this moment is ( ) dms /2 ⋅=γ , where m is the quantity of performed cycles of shear. Value 

of shear elastic modulus is: G=P/γ. 

6. If m<Mmax we have to overpass to 3-d stage of modeling, otherwise we have to stop the calculations. Mmax is 

the maximum quantity of cycles by shear (in our calculations Mmax=100). 

 

Initial and final configurations of system under shear deformation for two mutually perpendicular 

directions represent in figs.4.8 and 4.9. 

 

 
Figure 4.8: Shear in X direction, which is normal to basic mass of alcane chains. 
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Figure 4.9: Shear in Y direction along basic mass of alcane chains. 

 

Alteration of elastic modulus during the shear deformation one can see in fig.10 (Gx and Gy, Pа) for two 

mutually perpendicular direction of shear (γ, in relative units). In our opinion so sizable anisotropy of shear 

modulus is explained by energetic disadvantageous increasing of lateral surface of crack (see part 4.1.1.) at 

deformation in X-direction (fig.4.8). Decreasing of Gx value during the final stage of deformation has been 

induced by temporary shortening above surface in connection with “healing” one of microcracks.  
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Figure 4.10: Dependence of elastic modulus (G, Pа) of value of shear deformation γ (relative units) at 

temperature 300К for two mutually perpendicular directions (see figs.4.8 and 4.9 for details). 

 

 One can note, that asymptotic values 80 and 430 МPа for shear elastic modulus of interphase layer of the 
system «n-С100Н202  - graphite», are in precise corresponding with known from literature data (Koshkin N.I., 
Shirkevich М.G., 1976). 
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4.2. QUANTUM MECHANICAL INVESTIGATION OF STRUCTURE AND MECHANICAL 

PROPERTIES OF NANOCOMPOSITE INTERFACES 

This part is devoted to direct computational quantum mechanical investigation of the microstructure and 

microscopical mechanical characteristics of complex nanocomposites consisting from polymer matrix and 

highly dispersed fillers. Chemical structure of nanocomposite components, microscopic aspect of the process of 

deformation and friction at the composite interface caused by both mechanical stresses and adsorption is 

discussed in the mechanochemical modelling in a framework of a cluster approach in which approximations of 

microscopical deformation and friction are realized.  

 

4.2.1. General task of investigation. Development of computational approach. 

Microstructure and mechanical characteristics of nanostructured materials or composites is now a topic of 

wide and advanced investigations. It is well known that highly developed and complex interface between fillers 

and matrix of these materials is mainly responsible for their unique properties that accounts for increasing 

application of nanocomposites in technology and industry. And now it is evident that nanostructured materials 

require a lot of time and money consumptions for manufacturing, they are highly difficult for experimental 

characterization and analytical testing. Therefore theoretical investigations of composites take on special 

significance. Computational modelling allows to study the microscopical structure and mechanical properties of 

nanoparticles and interfaces of nanocomposites, it gets possible to predict some important properties of 

nanomaterials and to perform computational selection of nanocomposites with necessary and preset 

characteristics.  

The most of theoretical approaches, which are used now for investigation of composites, use the solid 

state principles, i.e. an approach in which material is considered as continuum. Properties and deformation of 

composites are described here by means of finite elements where molecular structure of materials is not taken 

into account. Nevertheless there are the natural limits of finite division of materials into elements, which are 

atoms and molecules bearing information about their chemical properties. Therefore it looks highly perspective 

to study the structure and mechanical properties of nanocomposites using theoretical atom-level approaches 

which can be joined in a complex hierarchy system combining quantum mechanics, molecular dynamics and 

Monte Carlo, mesoscopic molecular mechanics and molecule-engineering design. Such a hierarchical system 

represents complementary and interconnected approaches and quantum mechanics can be considered as the first 

and important step in the theoretical study of microstructure and mechanical properties of composites. 

 

4.2.1.1. Quantum mechanical method. 

Since bulk of time-consuming calculations of complex clusters were conducted, the originally elaborated 

semiempirical method PM3 was applied (Stewart J.J.P., 1989), which was modified specially for calculating 

large molecular systems.  

This method was realized within the original package CLUSTER1, which does not concede to ab initio 

approaches in accuracy of calculations, however considerably gain in speed of calculations. The applied method 
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is intended for calculation of base structural and energetic characteristics of nanosized molecular systems in the 

basic electron state.  

 

4.2.1.2. Parallel calculations. 

Since in work it was necessary to perform a lot of calculations of large molecular systems (up to several 

hundreds atoms) corresponding to successive steps of deformation with full optimization of space structure of 

molecular systems parallel calculations was realized within package NANOPACK exploiting fast semiempirical 

quantum mechanical calculations. Calculation in a parallel mode was conducted on supercomputers in the 

interdepartmental supercomputer center of the Russian Academy of Science. Calculation in a parallel mode 

using NANOPACK package allowed carrying out the direct quantum mechanical calculations of molecular 

systems of the real nanoscale size with reasonable computational time. 

 

4.2.1.3. Cluster approach. 

Computational experiment was realized in cluster approach in which some part of polymer-filler interface 

was considered as model cluster consisting of up to some hundreds atoms and being up to several tens of 

nanometers in diameter. Quantum mechanical modelling consisted in preliminary construction and QM 

optimization of cluster models of composite components with various chemical structures. Than on the base of 

these models a complex cluster representing the adsorption complex of these components can be received and 

optimised in QM approach. Calculated binding enthalpy in this cluster energetically characterized strength of 

intermolecular interactions in the interface of composite components. Earlier it has been shown (Е.Nikitina, 

2001), that such cluster approach within QM modelling yields reliable results at definition of microscopical 

structure and energetic characteristics of a big number of composite interfaces.  

 

4.2.1.4. Modelling of molecular system deformation. Mechanochemical internal coordinate approach. 

Deformation of polymer-filler interface and internal friction at this interface has been investigated in 

quantum mechanical study in a framework of co-ordinate of microscopical deformation and friction 

approximations.  

Computational mechanochemical experiment, which was applied for the analysis of the microscopic 

characteristics of deformation of molecular systems, was organised by analogy to macroscopic mechanical 

experiment in a mode of active loading. Firstly the microscopic models of both polymer and high-dispersed 

filler particle as well as the model of their complex, suitable for the quantum-chemical study of the mechanical 

properties of the composite interface is constructed and optimised in QM approach. Than, mechanochemical 

internal coordinate of deformation (MIC) is chosen, which change allows describing a required sequence of 

deformation states of the molecular system under study. Coordinate of internal deformation is determined by 

two groups of atoms, which set surfaces of the application of deformation force, as well as direction and kind of 

deformation. The computational experiment consists in sequential step-by-step deformation of molecular system 

starting from a stable initial state up to the bond break along the MIC. The full space optimisation of the 

molecular system is carried out within the framework of quantum-chemical calculation on each step of 
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deformation. Atoms determining MIC are excluded from the process of optimisation. Force of deformation of 

the molecular system is determined as a gradient of total energy of the system on MIC. 

 

4.2.1.5. Modelling of molecular system friction. Microscopic friction coordinate approach. 

Computational experiment, which was applied for the analysis of the characteristics of microscopic 

friction in the interface of nanocomposite was organised quite similar in the modelling peculiarities to the 

described above MIC approach.  

Such study can be carried out within the framework of approach of microscopic friction coordinate 

(MFC) realized in the present work. In the case of MFC modelling microscopic coordinate of friction is set by 

two groups of atoms in a system of two molecules determining a direction and a plane of friction. The position 

of the first particle is fixed by exception of some its atoms from a process of optimisation. The computational 

experiment consists in sequential step-by-step moving of the second particle from an initial state along the 

surface of the first molecule corresponding MFC. Full space optimisation of the atoms, which do not determine 

MFC, is carried out on each step. Determining MFC atoms are excluded from the process of optimisation. The 

microscopic force of friction is calculated as a gradient of energy of system on MFC.  

 

4.2.2. Results of computational experiments and discussion. 

4.2.2.1. Internal microscopic friction in a matrix of rubber and in its adsorption complex with a particle of 

graphite carbon filler. 

The microscopic energy and force characteristics of friction of two chain segments of unsaturated organic 

polymer have been simulated within the framework of MFC approach. These chain segments were modelled by 

two molecules of heptane. Fully optimised starting structure of a complex, consisting from two heptane 

molecules were designed is presented in fig.4.11. The received characteristics were compared with similar ones 

calculated for intermolecular friction of segment of unsaturated organic polymer along the surface of carbon 

filler in their adsorption complex. Polymer chain segment was modelled also by heptane molecule and the 

surface of a carbon particle was simulated by sp2-carbon cluster with graphite structure. Fully optimized 

structure of corresponding adsorption is shown in fig.4.12. Introduction of microscopic friction coordinate and 

the sequential steps of intermolecular friction are presented in fig.4.13 and fig.4.14 for the first and the second 

systems respectively. 

 
Figure 4.11: Optimised structure of adsorption complex, consisting of two heptane molecules. 
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Figure 4.12: Optimized structure of adsorption complex, consisting of heptane molecule and sp2-carbon cluster 

with graphite structure. (a - top view, b - side view). 
 

  

МFC 

Figure 4.13: Introduction of microscopic friction coordinate (MFC) and sequential steps of intermolecular 

friction of two molecules heptane. 
 

   

МFC 

Figure 4.14: Introduction of microscopic friction coordinate (MFC) and sequential steps of intermolecular 

friction of molecule heptane along the surface of carbon cluster. 

The energy and force characteristics obtained within quantum-chemical modelling of microscopic 

intermolecular friction of two chain segments of unsaturated organic polymer molecules as well as 

corresponding characteristics received for the friction of the latter chain along the surface of graphite carbon 

particle are presented in fig.4.15 and fig.4.16 respectively. 
 

  
bа

Figure 4.15: Energy (a) and force (b) characteristics of microscopic intermolecular friction in the system of two 

heptane molecules. 
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  а b
Figure 4.16: Energy (a) and force (b) characteristics of microscopic intermolecular friction in the system of 

heptane molecule and carbon cluster with graphite structure. 

 

In the course of the modelling it was obtained that the force of “shift deformation” (or of intermolecular 

friction) for the system of polymer - polymer is equalled approximately 4 kcal/mol*A, and the similar force 

characteristic for the system of polymer - carbon particle is equalled approximately 10-12 kcal/mol*A. At the 

same time the value of destroying force for a polymeric chain is equal approximately 80-100 kcal/mol*A for 

individual polymer, and at about 2 times less for polymeric chain being in a contact with filler surface (see 

discussed above results).  

Thus cohesion strengthening of organic polymer chains on the surface of carbon fillers was revealed in a 

framework of quantum-chemical study. Maximal force of tearing off polymer particle adsorbed on carbon 

surface was found approximately 3 times higher than for polymer in a polymeric matrix. Owing to rather weak 

however quite sufficient for immobilization of polymeric chain segments on the carbon surface Van-der-Waals 

forces, around carbon filler particle some condensed layer of rubber is formed with the lowered mobility of 

chain segments which most likely is responsible for strengthening of organic polymers by filling them with high 

dispersed carbon.  

4.2.2.2. Enthalpy of adsorption in adsorption complex of rubber - carbon filler with nonterminated regular 

structure. 

Based on the abovementioned results the study was carried dedicated to an investigation of the structure 

of carbon surface, which can supply the best strengthening effect for the rubber composites. 

It was taken into account in the study that the microscopical mechanism of the strengthening of the 

organic rubber composites by filling them with high dispersed carbon can occur due to immobilization of 

organic polymer chains on the surface of carbon particles. So in the current study the investigation of the 

correlation of structure the carbon particle surface with corresponding effect of composite strengthening was 

fulfilled in the framework of QM modeling. 

It was found experimentally, that the surface of the technical carbon represents the partially or fully 

destroyed structure of graphite. Defects of the lattice caused by the thermal treatment lead to the absence of 

short range ordering. Such partially defected high dispersed carbon represents high abilities as strengthening 

filler for organic composites. But it was obtained, that properties of technical carbon as the strengthening agent 
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can become worse after long-term thermal treatment. So it is important to study the connection of the structure 

of the carbon surface with it’s affinity as filler of composites. 

For the study of the connection of structure the carbon particle surface with corresponding effect of 

composite strengthening in the framework of quantum-chemical modeling there were constructed and fully 

optimized four models of the technical carbon, containing 299 atoms each. These models represent different 

possible structures of carbon particle surfaces (see fig.4.17,a-d).  

 

  

 
 

b a 

Figure 4.17: Optimized structures of different models of the carbon surfaces (a:С1, b: С2, c: С3, d: С4, (see text, 

top view). 

d c 

Model of the carbon surface with regular graphite structure (C1) is represented in fig.4.17,a. The model 

with sp2- and sp3- carbon in the regular arrangement (C2) is presented in fig.4.17,b. The model, keeping as 

graphite sp2- carbon, but with non-regular arrangement (with different holes in the structure) (C3) is presented 

in fig.4.17,c. The model in which carbon exists both in sp2- and sp3- hybridizations and in non-regular 

arrangement (with different holes in the structure) (C3) is presented in fig.4.17,d. 

Adsorption complexes of the model organic polymer Н-(СН2)n-Н, where n=25 on these four carbon 

model surfaces was calculated. Fully optimized structures of the corresponding adsorption complexes are 

presented in fig.4.18,a-d.  

Enthalpy of adsorption calculated for one monomer unit -СН2- for all models are shown in the diagram, 

see fig.4.19. Forces of the shift deformation for the movement of the segment of organic polymer along the 

carbon surface for 1 A, i.e. forces of microscopical friction of polymer chain along the carbon surface were 

calculated for all models under study. These forces are represented in fig.4.21. 

 

b а 

c d 
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Figure 4.18: Optimized structures of different models of adsorption complexes of the organic polymer segment 

Н-(СН2)n-Н, n=25 with carbon surfaces (a:С1, b: С2, c: С3, d: С4, (see text, side view). 
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Figure 4.19: Enthalpy of adsorption (a) of the segment of organic polymer Н-(СН2)n-Н, n=25, calculated for one 

monomer unit -СН2- and forces of the shift deformation (b) for its movement along the carbon surfaces С1, С2, 

С3, C4. 

As it is seen from the results the enthalpy of binding of one monomer unit -СН2- with carbon surfaces 

decreases in the row: С1>С2>С3>С4, so thus the less energetic favorable contact was obtained for adsorption 

complex of polymer –graphite surface (C1), and the most energetic favorable contact was obtained for 

adsorption complex of polymer –surface (C4), with carbon in sp2/sp3-hybridization with non regular defected 

surface, containing some holes. Calculated forces of microscopical friction confirm the previous state. Thus the 

force of shift deformation is minimal for microscopical friction of the segment of polymer chain along the 

regular graphite surface (C1), and maximal for the case of the most defected surface (С4), being at about 2.5 

times higher. The first results, presented in this stage show the abilities of such kind of computational modeling, 

and in the further study it is interesting to make more detailed ranking of carbon particles with accordance to 

defection structure of their surfaces and in some computer selection obtain structure of carbon particles, 

revealing the best effect of strengthening for organic composites.  

 

4.2.2.3. Shift deformations in adsorption complex of rubber with nonterminated carbon fillers. 
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Microscopic force characteristics obtained for friction of polymer chains were compared with the 

analogical results of the modelling of microscopical friction of the segment of organic polymer Н-(СН2)n-Н, 

where n=25 along carbon surfaces C1-C4.  

Structure of intermolecular complex of two interacted segments of organic polymer corresponded to two 

different steps of particle-particle shifting optimised in QM approach and the introduced microscopic friction 

coordinate (MFC) are presented in fig.4.20. Stepwise shifting from the equilibrium state was carried out for 60 

steps of shifting with value of one step equal 0.5 A. The dependence of force of particle-particle shifting on the 

value of shifting is presented in fig.4.21.  

 

 

MFC 

Figure 4.20: Microscopic friction coordinate (MFC) and two steps of shifting in the system of two segments of 

organic polymer Н-(СН2)n-Н, where n=25. 

 

Obtained data was compared to results of similar calculation for microscopical shift of the same segment 

of organic polymer Н-(СН2) n-Н for n=25 along the surfaces of model carbon particles С1-С4 described above. 

Step-by-step shift was modelled for 130 steps with size of latter equal 0.5А. 

Calculated dependences of shift force on size of shift for all investigated molecular complexes are 

presented in figs.4.22-4.25. Diagrams evidently show “friction at atomic level”. Maximums on the curves 

correspond to the closest atom-atom contacts; minimums correspond to the positions of atoms fare from each 

other. Maximums shifting forces characterize forces of molecular friction or molecular cohesion polymers and 

carbon surfaces.  
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Figure 4.21: Force of shift deformation or molecular friction in the complex of two segments of organic 

polymer Н-(СН2)n-Н, where n=25. 
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Figure 4.22: Force of shift deformation or molecular friction in the complex of segment of organic polymer Н-

(СН2)n-Н, where n=25 and model of carbon surface C1. 
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Figure 4.23: Force of shift deformation or molecular friction in the complex of segment of organic polymer Н-

(СН2)n-Н, where n=25 and model of carbon surface C2. 
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Fig.4.24. Force of shift deformation or molecular friction in the complex of segment of organic polymer Н-

(СН2)n-Н, where n=25 and model of carbon surface C4. 
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Fig.4.25. Force of shift deformation or molecular friction in the complex of segment of organic polymer Н-

(СН2)n-Н, where n=25 and model of carbon surface C4. 

 

The results revealed that the force of shift deformation or shift friction in polymer matrix is 2-3 times 

lower, than the same force for molecular friction in the system polymer- surface of carbon particle. This is a 

reason of immobilisation of polymer chain on the surface of carbon. Moreover, calculations revealed that force 

of shift friction increases in the row of adsorption complexes with the models: C1<C2<C3<C4, so that the 

minimal value of shift force was obtained for regular C1 graphite surface and the maximal – for more defective 

surface C4. 

Thus, from the received data it is visible, that the most energetically unfavorable contact is received for 

the system polymer - graphite surface (С1). The most energetically favourable contact is received for a case of 

adsorption of polymer on a surface in the sp2/sp3-carbon hybridization, having holes and five-ring defects (С4) 

on which fragment of polymer chain immobilized better, and, hence, which has the best strengthening properties 
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as filler for rubber composites. Summarizing in should be mentioned, that in the given section the technique 

offered earlier is tested on an example of calculation of molecular friction in the complex system consisting of 

organic polymer and carbon filler.  

 

4.2.2.4. Influence of terming of carbon particles by hydrogen on enthalpy of their binding with rubber 

matrix. 

At the current stage termination of these model surfaces by hydrogen atoms was investigated. All 

structures presented in fig.4.17 have some unsaturated valences, which are located on the atoms on the boundary 

of aromatic ring system for C-sp2-structures, or on the atoms in the “hole” defects or on the surface C atoms in 

sp3-hybridization. Nonterminated these atoms are very energetically favorable for chemical and adsorption 

activity. These atoms can be terminated in air or under heat treatment by hydrogen atoms or/and hydroxyls. 

Chemical activity of these active places is changed after termination; nevertheless these active places also play 

in essential role in adsorption processes.  

Similarly to the research described in section 2.3 adsorption of a segment of organic polymer Н-named by 

hydrogen (СН2) n-Н for n=25 has been calculated on H-terminated surfaces C1_H…C4_H. Completely QM 

optimized structures of corresponding adsorption complexes are presented on fig.4.26,a-d.  

Enthalpies of the adsorptions calculated for one monomer unit -СН2- for each these surfaces and force of 

shift deformation at movement of a segment of organic polymer along a surface on 1А (forces of microscopic 

friction of polymer above a surface of carbon particle) are presented on fig.4.27,a and b.  

 

а b 

c d 

Figure 4.26: Models of adsorption complexes of segment of organic polymer Н-(СН2) n-Н for n=25 and 

terminated by hydrogen carbon surfaces: С1_H (a), С2_H (b), С3_H (c), С4_H (d). 

 

It was obtained that enthalpy of binding of one monomer unit -СН2- with the H-modified carbon surfaces 

decreases in the same number, as for nonterminated carbon surfaces, namely in a row: С1_Н> С2_Н> С3_Н> 

С4_Н. Graphite surface (С1_H) was found as the energetically most-unprofitable contact for system polymer, 

and the most energetically favourable contact is received for a case of adsorption of polymer on H-terminated 

surface containing defects with atoms of carbon in sp2/sp3-hybridizations and having different holes in a 

structure. (С4_H).  
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Figure 4.27: Enthalpies of adsorptions (a) of a segment of organic polymer Н-(СН2) n-Н for n=25 and forces of 

its shift deformation (b) at movement on 1А, calculated on one monomer unit -СН2- for models С1_Н, С2_Н, 

С3_Н, С4Н of carbon surfaces terminated by hydrogen. 

 

Consideration of the stress diagram of friction for studied surfaces also confirms the received energetic 

result. Force of shift of microscopic friction is minimal for a case of strictly periodic graphite surface (С1_Н). It 

is worth to mention that for nonterminated and H-terminated models the same result was received. However if 

to compare the similar nonterminated and terminated defective surfaces force of microscopic friction along the 

terminated surface makes approximately 0.9-0.7 from force of microscopic friction along not terminated 

surface. Is of interest in the further during consecutive numerical quantum mechanical experiment to make more 

detailed ranging a surfaces of carbon particles on number and a kind of defects of a lattice of graphite and kind 

of its termination., Also by selection in computer design to establish a microscopic structure of a surface of 

technical carbon, optimum for the best strengthening effect. 

 

4.2.2.5. A structure and adsorption properties of nonterminated and terminated balk particles of amorphous 

soot. 

Balk soot particles was considered both not terminated (clean), and terminated by hydrogen. Adsorption 

on a surface of such soot particles of water both in an individual state and in a cluster or drop-like state 
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consisted from several H-bonded water molecules was considered in a course of QM modeling. Also adsorption 

of model polyethylene oligomer on different (H-terminated and clean) soot model particle surfaces was studied 

in absence and at the presence of water. 

Several microscopic models of technical carbon (amorphous soot) suitable for carrying out of QM 

calculations of the complex composite interface were constructed. Two carbon clusters with number of atoms 

170 and 670 modeled technical carbon. The small particle had diameter ~15 A, and big ~25A. The bulk of 

particles had a structure of carbon in and sp3-configuration, the surface of particles had both С-sp2, and С-sp3 a 

structure, thus, the surface contained both the graphite, and the diamond-like structures disorderly distributed 

and represented amorphous carbon. Full QM optimization of structure of these model clusters has been 

performed. Structures received С170 and С670 clusters are presented in fig.4.28.  

 

 

а 

b 

Figure 4.28: Optimized structures of С170 (a) and С670 (b) clusters of amorphous soot with nonterminated 

surface. 

 

Various variants of surface termination by hydrogen of carbon models were considered (bounding 

effects). It is known, that amorphous soot, which is used as filler for rubbers, is made in vacuum. In this case its 

surface can remain nonterminated also interacting with matrix of polymer (rubber) On the other hand, the 

surface of such particle has exclusive chemical reactivity. At contact to air such surface can be terminated. We 

have considered termination of a surface of amorphous soot by hydrogen. Quantum mechanical minimization of 

H-terminated carbon clusters was fulfilled and obtained structures are presented in fig.4.29. 
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Figure 4.29. Optimized structures of Н-С170 (a) and Н-С670 (b) clusters of amorphous soot with the surface 

terminated by hydrogen. 

 

Interaction amorphous soot model cluster С670 with individual water molecules and with the water 

connected in a complex, i.e. with model drop of water has been considered (see fig.4.30,a and b). Besides 

interaction of individual molecules of water and a drop of water with the model of H-terminated soot cluster Н-

С670 has been considered also considered (see fig.4.31,a and b).  

 

 

 
 

а b 

Figure 4.30: Interaction of nonterminated soot particle С670 with individual water molecules (a) and with the 

H-bonded drop of water (b). 
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а b 

Figure 4.31: Interaction of the soot particle Н-С670 terminated by hydrogen with individual water molecules (a) 

and with the H-bonded drop of water (b). 

 

During quantum mechanical modelling it has been shown, that on nonterminated carbon surface there is 

an adsorption of individual water molecules which can be characterized as Van-der-Waals one: RС…О =2.0-2.2A, 

ΔH~2-2.5 kcal/mol (calculated for one water molecule). Much weaker interactions of water molecules occur 

with nonterminated carbon surface: RН…О =2.5-2.8A, ΔH~1.3-1.5 kcal/mol (calculated for one water molecule). 

The H-bonded water drop does not spread on carbon surface, interacting with the latter as a unit. As it has 

been shown in QM calculations energy of hydrogen bonding OH … O in cluster, consisting of several water 

molecules is ΔHbind~4 kcal/mol, that is, more, than energy of interaction of water molecule with soot surface, 

thus, is energetically proved clusterising of H-connected water molecules on soot surface. 

Further adsorption of polyethylene oligomer consisting of 16 monomer units - (СН2)n-, where n=16, on 

nonterminated and terminated carbon particles without water and at presence of water was considered. 

Corresponding structures of QM optimized adsorption complexes I, II, III, IV are presented on fig.4.32-4.33. 

Enthalpies of binding of polyethylene chain calculated for one monomer unit - (СН2)- for different complexes I, 

II, III, IV are presented on fig.4.34. It is visible, that most energetically favourable adsorbing ability represents 

nonterminated carbon surface in absence of water.  
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а b 

Figure 4.32: Interaction of polyethylene oligomer with nonterminated С670 () and H-terminated Н-С670 () soot 

particles (adsorption complexes I and II, respectively). 

 

 
 

а b 

Figure 4.33. Interaction of polyethylene oligomer with nonterminated С670 () and H-terminated Н-С670 () soot 

particles with the presence of water (adsorption complexes I and II, respectively). 
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Figure 4.34. Enthalpy of polyethylene binding with soot models calculated for one monomer unit - (СН2) - for 

different adsorption complexes I, II, III, IV. 

 

It was obtained that fragment of organic polymer interacts with nonterminated carbon surface at about 1.5 

times stronger than with H-terminated carbon surface. Water interlayer between polymer and carbon surface 

decrees strength of interaction in the system. The reinforcing effect of pure nonterminated carbon fillers is the 

best. 

4.2.2.6. Influence of chemical nature and structure of polymer on strengthening effect of carbon fillers on 

rubber composite. 

The impact of chemical nature of polymer and chemical nature of surface soot modification on the 

enthalpy of binding and the force of intermoleculat\r shifting (friction) was considered. Carbon model in this 

study contains 170 atoms of C and has a diameter of ~15 A. The nuclear of this particle had a structure of 

carbon in and sp3-configuration, the surface of the particle had both С-sp3, and С-sp3 a structure, thus, the 

surface contained both the graphite, and the diamond-like structures disorderly distributed and represented 

amorphous carbon. Moreover the same particle, but H-terminated was taken for the modeling also (see 

structures of these carbon clusters in figs. 4.28,а and 4.29, а). Adsorption of polymers of different chemical and 

space structure on the surfaces of these soot particles was studied in QM modeling. For this study individual 

molecules of the oligomers CH3-(R)n-CH3, with n=5 were constructed and optimized in QM. There were 

considered oligomers with different chemical nature: polyethylene, polypropylene, polyacrylic acid, polurea, 

and polyvinyl acetate. The description of model oligomers and QM optimized structures of its molecules are 

presented in Table 4.1.  
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Table 4.1. 

The description of model oligomers used in QM modelling of adsorption of polymeric chain fragments on a 

surface of soot particles. 

Fragment of 
polymer 

(oligomer): 

Structural formula of 
monomer unit R:  

CH3-(R)n-CH3,  n=5 

 
Optimized in QM structure of oligomer 

Polyethylene 
(PE) 

-(СH2CH2)- 

 
Polypropylene 

(PP) 
-(CH2CHCH3)- 

 
Polyacrylic 
acid (PAA) 

-(CH2COOHCH2)- 

 
Polurea  

(PU) 
-(NHNHCO)- 

 
Polyvinyl 

acetate (PVA) 
-(CH2COC(O)CH3CH2)- 

 
 

Adsorption of each of these oligomers was calculated on the surfaces of nonterminated and H-terminated 

soot particles C170. QM optimized structures of the corresponding adsorption complexes are summarized in 

Table 4.2.  
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Table 4.2. 

Optimized models of adsorption complexes of polymers with soot particles. 

N Fragment 
(oligomer,) of 

polymer: 

Adsorption on non-terminated soot surface Adsorption on H-terminated soot surface 

1 Polyethylene 
(PE) 

  
2 Polypropylene 

(PP) 

  
Polyacrylic 
acid (PAA) 

  
4 Polurea  

(PU) 

  
5 Polyvinyl 

acetate (PVA) 

  
 

Binding enthalpies and forces of intermolecular microscopic shifting (with movement of the molecules 

along each other on 1A) were calculated for each of these complexes (see figs.4.35 and 4.36). For the best 
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comparing and polymer energetic ranking by binding enthalpy these values were calculated for one monomer 

unit. 
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Figure 4.35. Binding enthalpy (а) and force of shift deformation (b) of the segment of organic polymer СН3-

(R)n-СН3, n =5, calculated for one monomer unit -R- for model soot particle with nonterminated surface. 
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Figure 4.36. Binding enthalpy (а) and force of shift deformation (b) of the segment of organic polymer СН3-

(R)n-СН3, n=5, calculated for one monomer unit -R- for model soot particle with H-terminated surface. 

 

Some conclusions could be done about impact of chemical nature of the polymer matrix on the interaction 

of the polymer segments with surface of soot fillers. The binding enthalpy and the force of shifting is 

determined mainly by square of hydrophobic contact between polymer fragment and surface of soot particle (i.e. 

by presence and number of СН2 и СН3 groups), and by the presence and number of electronegative atoms (O, N) 

in the polymer structure. Moreover the conformations of the polymer fragment on the interface, namely 

complementary character of its space structure with structure of soot surface impact also of the polymer 

adsorption. 

It was obtained that binding enthalpy and force of shifting of polypropylene in ~1.5 times higher than the 

same values obtained for polyethylene. It can be explained with greater square of hydrophobic contact between 
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polymer fragment and surface of soot particle in the case of polypropylene. In the same time binding enthalpy 

and force of shifting of polurea in ~1.7 times higher than the same values obtained for polyethylene. Having at 

about the same surface of interparticle contact molecule of polurea oligomer has N and O electronegative atoms, 

which play the decisive role in the binding in this case.  

The most energetically favorable contact of the oligomers under study was obtained for polyvinyl acetate 

(~ in 2.0 times higher than for polyethylene), that can be explained by the impact of the two factors described 

above. This molecule has high square of hydrophobic contacts and also contains electronegative atoms O.  

The lack of high adsorption capacity in the case of polyacrylic acid (it also has electronegative atoms O in 

the structure) can all means be explained by not favorable conformation of this molecule under adsorption on 

the soot surface, that can follow from not favorable geometry of the corresponding adsorption complex for 

realization both hydrophilic and hydrophobic contacts. This oligomer revealed small value of binding enthalpy. 

Analogical values, obtained for H-terminated soot surface, revealed the same regularity for different kinds 

of polymers however in a total binding enthalpies and forces of shifting are at about 0.7 times less than for 

nonterminated surface. 

 

4.2.2.7. Influence of chemical structure of filler surface (particles of carbon) on their aggregation ability. 

To study the aggregation of soot particles in the individual state and in the polymer matrix quantum 

mechanical modeling was performed for interaction of two soot particles. Chemical modification of the soot 

surface was studied as a factor, which can prevent sintering of the soot filler particles. The impact of chemical 

modification of soot surface on the binding enthalpy and force shifting was studied in QM approach. Four 

particles of С170 were constructed as nonterminated, -H, -OH, and -COO- terminated. The latter surfaces were 

negatively charged. Interaction of two particles of each kind was calculated in QM modeling and obtained 

complexes are presented in Table 4.3.  

Calculated minimal interparticle distances, binding enthalpies and forces of particle-particle shifting are 

presented also in this table. The latter two values were calculated for one unit of surface the contact of the two 

particles (1А) for the convenience of comparison. 

As it is seen from the results, presented in the Table 4.3 the strong interaction is observed in the case of 

interaction of nonterminated carbon surfaces. It leads in some cases to the formation of new covalent bonds C-C 

between the former soot particles. Thus the initial protoparticles of the amorphous carbon with nonterminated 

surfaces interact with each other forming larger molecular structures, which can not be easily divided into the 

initial particles, but which kept in the main details their initial structure. 

In the case of carbon particles with H-terminated surfaces much weaker interaction of the particles was 

obtained. Hydrophobic H…H interactions keep interacted particles at the H…H distances at about 1.6-1.7А. 

Binding enthalpy and forces of intermolecular shifting are enough for interparticle agglomeration. It is very 

likely that this kind of agglomeration can be destructed with an impact of adsorption interlayer between soot 

particles, which can be polymer or water. 
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Table 4.3. 

Optimized models of adsorption complexes of two soot particles. 

 
System 

 
QM optimized structure 

Min. 
distance 
between 
particles, 

A 

ΔH bind, 
kcal/mol 

Fsh 
kcal/mol*

A 

2 soot 
particles with 

non-
terminated 

surface 

 

1.4-1.5 -72.3 103 

2 soot 
particles with 
H-terminated 

surface 

 

1.6-1.7 -2.6 19 

2 soot 
particles with 

OH-
terminated 

surface 

 

1.9-2.0 -4.5 32 

2 soot 
particles with 

COO--
terminated 

charged 
surface 

3.0-3.2 -0.4 2.5 

 

In the case of interaction of the soot particles, which surfaces are terminated by hydroxyls, interparticle 

agglomeration is determined by hydrogen bonding between particles. Minimal interparticle distances correspond 

to the standard hydrogen bonds (1.9-2.0 between Н and О atoms participating in H-bond formation). 

Aggregation or sintering of the soot particles is stronger than in the case of H-terminated soot surfaces, but 

possible can be destructed in water solution or in the presence of polymer matrix. 
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In the case of interaction of the carbon particles, which surface is terminated by negatively charged COO- 

groups, particles are slightly repulsed, and aggregation is not taking place. (The shortest distance between 

particles is О…О 3.0-3.2, so the surface modification similar studied can prevent soot particles agglomeration if 

necessary. 

 

4.2.2.8. Aggregation of filler particles (carbon particles) at presence of water molecules and polymer on their 

surface. 

The impact of chemical nature of the particles, which are adsorbed at the interface of two soot particles on 

their binding enthalpy and force of microscopical friction, was studied. Nonterminated, terminated by H soot 

surfaces were taken into consideration. 

Interaction of two soot particles was studied also in the presence of interparticle molecular layer, 

consisting of polymer molecules and/or water molecules. Surfaces of the soot particles were examined as 

nonterminated and terminated by H atoms. QM optimized structures of adsorption complexes obtained in this 

study are presented in Table 4.4. In this table the results of enthalpy of binding and intermolecular force of 

shifting are also presented. 

As it is seen from the results, aggregation of the soot particles can be prevented by adsorption interlayer 

of polymer between the soot particles. Adsorption of water in the interparticle interface can be considered as 

competitive process for polymer adsorption. For the formation of the contact polymer-filler water layer on the 

soot surface has to be removed. Energetic of these competitive processes is similar, and so for stronger 

adsorption of the polymer chains on the filler particles modification both polymer molecule and surface of the 

fillers has to be performed. 

 

Table 4.4. 

Optimized models of adsorption complexes of two soot particles with interface interlayer of polymer and water 

 
System 

 
QM optimized structure 

Min. 
distance 
between 

particles, A 

ΔH bind, 
kcal/mol 

Fsh 
kcal/mol*A

2 soot 
particles with 

non-
terminated 
surface and 

water 
interlayer 

 

3.2-3.4 -3.8 22 
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2 soot 
particles with 
H-terminated 
surface and 

water 
interlayer 

4.3-4.4 -1.9 13 

2 soot 
particles with 

non-
terminated 
surface and 

polymer 
interlayer 

 

4.7-5.1 -3.3 19 

2 soot 
particles with 
H-terminated 
surface and 

polymer 
interlayer 

7.0-7.2 -2.1 15 

 

 

4.2.2.9. Investigation of interaction of rubber polymeric molecules with filler particles (technical carbon). 

Uniaxial deformation and intermolecular friction. 

The adsorption complexes of the carbon soot particles with the fragments of the polymer chains with 

different chemical nature have been studied recently. In the present part two natural rubbers, i.e. polybutadiene 

and isoprene have been examined in the quantum mechanical level in comparison with polyethylene. The main 

attention was devoted on the modeling of microscopic mechanical properties of adsorption complexes of these 

polymers with particles of amorphous carbon. 

A cluster model of amorphous carbon designed in the previous step of the study, which contain 170 atoms 

of carbon being of ~15A in diameter was used in the present study. The surface of this particle was partially 

terminated by hydrogen atoms. 

Adsorption of model polymer chains of two natural rubbers, namely polybutadiene and isoprene as well 

as of polyethylene was modeled on the surface of this model particle. Model polymer chains represent 

individual oligomer molecules CH3-(R)n-CH3, where n=10. Totally quantum mechanical optimized structures of 

these oligomers are presented in Table 4.5. Totally quantum mechanical optimized structures of the 
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corresponding adsorption complexes of these oligomers with model particle of amorphous carbon are collected 

in Table 6. Among the structures some geometrical, energetic and mechanical characteristics of these adsorption 

complexes are also presented in Table 4.6. 

In this Table 6 minimal distances between oligomer molecule and carbon particle R, enthalpy of binding 

calculated via one monomer unit of the polymer, maximal force (critical force of the rupture) of uniaxial 

deformation of the polymer chain Fdeform MAX, and maximal force of the microscopical friction Fsift MAX 

are presented.  

Table 4.5. 

Model polymers, for which quantum mechanical modeling was performed. 

Polymer  Structural formula of 
monomer unit R:  

CH3-(R)n-CH3,  n= 10 

Quantum mechanical optimized structure of oligomer 

Polyethylene 
(PE) 

-(СH2CH2)- 

 
Polybutadiene 

(PВ) 
-(CH2-СH=CH-CH2)- 

 
Isoprene (I) 

(para- isomer) 
-(CH2-C(CH3)=CH-CH2)- 
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Table 4.6. 

Model adsorption complexes of amorphous carbon particle with oligomers listed in Table 4.6 together with their 

geometrical, energetic and deformation characteristics, calculated in quantum mechanical approach 

Adsorption 
complex 

Optimized structure of the complex Min distance 
between 
particles, 

R, A 

ΔH bind 
kcal/mol 

Fdeform  
MAX 

kcal/mol А 

Fsift 
MAX 

kcal/mol А

Polyethylene 
(PE) –carbon 

particle 

 

3.2-3.4 -3.9 120.3 8.3 

Polybutadiene 
(PВ) – carbon 

particle 

 

3.0-2.9 -4.2 114.8 16.1 

Isoprene (I) – 
carbon particle 

2.6-2.8 -5.5 103.1 23.9 

 

Two microscopical mechanical characteristics were modeled for each of adsorption complexes under 

study. Firstly, the dependence of the force of the deformation of the polymer chain on the elongation of the 

polymer chain was calculated for oligomers in the contact with carbon particle. Uniaxial tension of the polymer 

chain was considered till the polymer bond rupture. Secondly, force of microscopical friction, i.e. change of 
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cohesion of the polymer chain with displacement of the polymer chain along the surface of the carbon particle 

was calculated. Corresponding force curves obtained in this modeling are presented in fig.4.37-4.38. 

 

 

a 

 

b 

 

c 

Figure 4.37: Dependence of deformation force on elongation of the polymer chain in the contact with carbon 

particle for polyethylene (a), polybutadiene (b), and isoprene (c). 
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a 

 

b 

 

c 

Figure 4.38: Dependence microscopical friction force on the displacement of the polymer chain along carbon 

particle for polyethylene (a), polybutadiene (b), and isoprene (c). 
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Some conclusions can be obtained in the course of QM modeling in a framework of microscopic internal 

coordinate of deformation (MIC) and microscopic friction coordinate (MFC) approaches. 

Force curves of uniaxial tension for polyethylene, polybutadiene, and isoprene reveal the similar 

peculiarities. The first part of each curve of the low elongations corresponds to region of entropic torsional 

conformation changes of the polymer chain. It presents the low forces of the deformation The second part of 

each curve represents Hook’s or enthalpic region of elongations of the polymer chain. In this part elongation of 

the valence bonds occurs mainly. This region is characterized by considerable growing up the force of 

deformation. Maximum value of the deformation force corresponds to the critical force of polymer bond 

rupture. 

In the row of polyethylene, polybutadiene, and isoprene considerably elongating the enthalpic region and 

decreases the critical force of polymer bond rupture. Thus the growing up the elastic character of the polymer 

chain in the studied row is revealed. Isoprene shows the most elastic properties corresponding to the obtained 

force regularities.  

Place of the polymer chain rupture occurs in each case in the vicinity of the surface of carbon particle 

being in the contact with the polymer molecule. The rapture of the polymer chain passes via cyclic transition 

complex with participation of the carbon surface active groups. Thus the destruction of the polymer chains in 

filled rubbers occurs mainly, by all mean, in the places of polymer contact with the filler particles. 

The best cohesion with carbon particle surface (the highest forces of microscopic friction) was obtained 

for isoprene molecule representing branchy and flexible chain, and the worst one was found in the case of 

polyethylene molecule. Hence the best reinforcement can be reported for the combination of isoprene-

amorphous carbon and the worth for system polyethylene-amorphous carbon. 

Obtained dependences of polymer molecule cohesion with carbon particle surface (or of the highest 

forces of microscopic friction) are in a good accordance with calculated geometrical and energetic 

characteristics which confirm the best effectiveness of isoprene-amorphous carbon composite system as filled 

rubber. 

 

4.2.2.10. Investigation of interaction polyisoprene  rubber with ultradispersed fillers of the various nature. 

Quantum mechanical modeling of microscopical mechanical properties has been performed for the rubber 

polymer in a contact with particles of high dispersed fillers of different nature. Thus adsorption of the natural 

rubber isoprene on particles of technical carbon (amorphous black soot), high dispersed amorphous silica (white 

soot), fullerene C60, and carbon tube C200 was examined at quantum mechanical level The main attention was 

devoted to the modeling of microscopical geometrical, energetical and mechanical properties of these adsorption 

complexes. 

Cluster models of the particles of high dispersed fillers used in the study are presented in fig.4.39. Particle 

of amorphous carbon designed in the previous steps of the study contains 170 atoms of carbon being of ~15 A in 

diameter. The surface of this particle was partially terminated by hydrogen atoms. Particle of high dispersed 

amorphous silica contains 220 atoms with Si-O-Si main motive being of ~22x14 A in dimention. The surface of 

this particle was totally terminated by hydroxyls. Fullerene was presented by particle C60, containing 60 carbon 
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atoms being of ~7 A in diameter. Particle of carbon tube was modeled by particle C200 of 200 carbon atoms. It 

was at about 20 A in length and ~8 A in diameter. Surfaces of two latter particles were not terminated, 

containing aromatic motive of sp2- carbon.  

Adsorption of model polymer chain of natural rubber, namely isoprene was modeled on the surface of 

these model particles. Model polymer chain was represented by individual oligomer molecule CH3-(CH2-

C(CH3)=CH-CH2)n-CH3, where n=10. 

 
Figure 4.39: Optimized structures of model particles of high dispersed fillers: (a) H-terminated particle of 

amorphous carbon, (b) OH-terminated particle of high dispersed amorphous silica, (c) fullerene particle C60, 

and (d) particle of carbon tube C200. 

 

Optimized in quantum mechanical approach structures of corresponding adsorption complexes consisting 

from polyisoprene oligomer and ultradispersed particles filler of different chemical nature are presented in Table 

4.7.  

Table 4.7. 

Model adsorption complexes of isoprene oligomer with high dispersed fillers of different nature. 

Adsorption 
complex 

Optimized structure of the complex Min distance 
between particles, 

R, A 

ΔH bind 
kcal/mol 

Fsift 
MAX 

kcal/mol А 
Isoprene -

carbon 
particle 

 

2.6-2.8 -5.5 23.9 
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Isoprene -
silica 

particle 

 

2.2-2.4 -8.1 31.7 

Isoprene –
fullerene 

C60 
particle 

 

3.0 -3.2 15.4 

Isoprene –
carbon tube 

C200 
particle 

 

2.8 -3.8 18.1 

 

Among the structures some geometrical, energetical and mechanical characteristics of these adsorption 

complexes are also presented in Table 1. Minimal distances between oligomer molecule and filler particle R, 

enthalpy of binding calculated via one monomer unit of the polymer, and maximal force of the microscopical 

friction Fsift MAX calculated via 1 A of polymer shifting along filler surface are presented in this Table. 

In the course of QM modeling some conclusions can be done concerning the impact of chemical nature of 

the filler particles on the interaction of the polymer segments with surface of fillers. The binding enthalpy and 

the force of shifting are determined mainly by hydrophobic contacts between polymer fragment and surface of 

filler particle. Moreover the conformations of the polymer fragment in a contact with filler surface, namely 

complementary character of its space structure with structure of filler affects also on the polymer adsorption. 

The best cohesion of isoprene chain with filler particle surface (the highest forces of microscopic friction) was 

obtained for the system isoprene-silica. A little worth is cohesion of isoprene with carbon black or soot. Such 

fillers as fullerene and high dispersed carbon tubes represent lower forces of adhesion, being practically similar 

with a little preference of the latter. Thus quantum mechanical modeling can provide us with information about 

ranking of filler particles with respect to their chemical nature and structure, and allows making some 

recommendations concerning surface modification of fillers. 
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4.2.3. Quantum-mechanical investigation of the interface in natural rubber – clay (montmorillonite) 

system. 

In the present part of quantum mechanical (QM) study there has been investigated the microscopical 

mechanisms of reinforcement of natural rubber by nanolayered alumosilicates (clays). Such kind of modeling 

allowed taking into account from the first principles the chemical nature of filler and rubber in characterization 

of mechanical properties of nanocomposites. An attempt was done to understand of interface morphology and 

the reasons of improvements of latex microscopical mechanical characteristics after introducing nanolayers of 

montmorillonite clay into natural rubber (cis-1,4-polyisoprene) on a nano or molecular level. The special 

attention was devoted to reviewing the ways of surface modification of hydrophilic clay platelets by 

hydrophobic or organophilic agents for enhancing the adhesion between rubber chains and clay filler surfaces. 

For this purpose ion exchange of clay interlayer cations (originally metallic ones) by different organic cations 

was investigated. Possibility and perspectives of application for rubber reinforcement of two fillers of different 

chemical mature, namely clay and carbon soot in the same time, has been studied also.  

4.2.3.1. Quantum-mechanical modeling of polyisoprene and montmorillonite. 

Natural rubber is a high molecular weight polymer of isoprene, C5H8. with repeating CH–C(CH3)=CH–

CH2– unit. Cis-1,4-polyisoprene configuration is essential for rubber. The double bond in each repeating unit in 

the polymer chain is a site of steric isomerism since it can have either a cis or a trans configuration. The polymer 

chain segments on each carbon atom of the double are located on the same side of the double bond in the cis 

configuration (II) and on the opposite sides in the trans configuration (III). Cis-1,4-polyisoprene has very low 

crystallinity and is an excellent elastomer over a considerable temperature range. 

The following model was constructed and optimized quantum mechanically for representing the part of 

rubber (cis-1,4-polyisoprene) chain: CH3–[CH–C(CH3)=CH–CH2]n–CH3, where n=10. Totally optimized 

structure of this molecule is presented in the fig.40. 

 

 
Figure 4.40: Structure of quantum-mechanically optimized of CH3-[CH–C(CH3)=CH–CH2]10– CH3 model of 

poly-cis-1,4-isoprene. 

 

Natural rubber latex basically consists of a dispersed phase containing rubber particles (poly-cis-1,4-

isoprene) and other non-rubber components in minor quantities (filler), and the dispersing medium, water, 

which contains several organic substances and mineral salts. Mechanical characteristics of latex are mainly 

depended on nature of fillers. 

Montmorillonite clay was selected as the filler in a present study of natural rubber latex composites. 

Montmorillonites are relatively cheap materials with fine-grained particle and high surface area. In addition, 
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they are readily dispersed in water (latex) without the aid of dispersing agents and are easily incorporated as a 

dry or aqueous dispersion without risking the destabilization of the latex.  

The crystal structure of the clay itself is most important. Montmorillonite consists of three "layers": an 

aluminum-containing octahedron layer sandwiched between two silicate layers thus its structure consists of a 

gibbsite Al(OH)3 layer bonded to a siloxane (S2O5) layer. The O2- atoms at the apexes of the silica tetrahedra 

replaces the OH- groups of the octahedral layer, and are shared between the layers. This three-layer grouping is 

referred to as a platelet. The platelets stack in various ways. Electrostatic and weak Van der Waal forces hold 

successive layers of montmorillonite structure. Consequently, montmorillonite has the ability to undergo 

extensive interlayer expansion or swelling in a direction perpendicular to the silicate anions. Water is absorbed 

between the platelets. There is an unsatisfied negative charge on the face of the clay platelet and cations such as 

Ca2+, Mg2+, and Na+ are attracted to the spaces between the platelets due to the net negative charge on the 

"faces" of the platelets. The characteristic expansion of the interlayer structure exposes a large active surface 

area and permits polymer molecules to enter into the galleries. Separation of clay platelets can occur under 

certain conditions giving very high aspect ratio filler, which dramatically improves composite properties. 

In the present study as a model of clay particle was chosen two montmorillonite platelets each consisting 

of 232 atoms, which were stacked one above other in parallel manner forming sandwich-like particles. Four 

water molecules and four Ca2+ cations were inserted into platelet interlayer. Totally quantum mechanically 

optimized structure of this cluster is presented in the fig.4.41. Distance between clay platelets was found as 

11.21 A for this model.  

 

 
Figure 4.41: Structure of quantum-mechanically optimized cluster of two interacted montmorillonite platelets 

with 4 calcium cations and 4 water molecules in the interlayer space. Large green spheres represent interlayer 

calcium cations; system of hydrogen bonding is represented in blue dotted lines. All atoms were allowed to vary 

during the simulation. 

 

4.2.3.2. Quantum-mechanical investigation of modification of montmorillonite surface. 
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According to the structure three different types of clay-polymer composites can be distinguished, namely 

conventional, intercalated, exfoliated composites. When the matrix polymer chains are unable to penetrate 

between the layers of the silicate particles conventional composites is formed. Intercalated structures are formed 

when one or more polymer chains intercalate between the layers. Hereby the interlayer spacing is increased but 

the ordered layer structure of the clay particles is retained. In exfoliated composites the clay particles are 

completely delaminated and the silicate layers do not show any periodicity in their arrangement.  

In general the reinforcing ability of clay is considered to be poor in conventional composites because of 

its large particle size and low surface activity, although clays have a long tradition as semi-reinforcing fillers 

and extenders in the plastic industry. Recently, such clays as montmorillonite have attracted a great deal of 

interest as nanocomposite reinforcements in polymers owing to their intrinsically anisotropic character and 

swelling capabilities. Because of the clay layer structure and its ability to disperse into nanometer-size platelets, 

nanometer reinforced materials with unique physical and chemical properties can been obtained. It has been 

reported in the literature that exfoliated structures are primarily responsible for high mechanical reinforcement, 

while intercalated and conventional structure play only a minor role (Burnside S.D. and Giannelis E.P., 1995; 

Alexandre M. and Dubois P., 2000). 

In the present study there were examined some factors which support the expansion and delamination of 

montmorillonite platelets in rubber matrix. These factors make it easy the rubber chain penetration into the clay 

interlayer zone due to enhancing its interaction with hydrophilic clay surface and provide the formation of 

exfoliated nanocomposite structure.  

The clays are characterized by their ion (e.g. cation) exchange capacities, which can vary widely. One 

important consequence of the charged nature of the clays is that they are generally highly hydrophilic species 

and therefore naturally incompatible with a wide range of polymer types. A necessary prerequisite for successful 

formation of rubber-clay nanocomposites is therefore alteration of the clay polarity to make the clay 

‘organophilic’ to help compatibilize the surface chemistry of the clay and the hydrophobic rubber matrix. 

Organophilic clay can be produced from normally hydrophilic clay by ion exchange with an organic cation such 

as an alkylammonium cation. The role of alkylammonium cations in the organo-clay is to lower the surface 

energy of the inorganic host and to improve it’s wetting characteristics with rubber.  

The present quantum mechanical modeling reviewed an impact of chemical nature of the interlayer 

organic cations (a pendant group) on manufacturing and properties of rubber- montmorillonite nanocomposite. 

The main question ahead of this study was to find in silico the way of determining the chemical composition 

and structure of organic clay interlayer cations that make thermodynamically favorable penetration of polymer 

chains into the interlayer region and assist in delamination of the clay in rubber matrix.  

For this purpose the quantum chemical modeling was fulfilled to reproduce microscopical structure and 

mechanical properties of the interface in the system of natural rubber (cis-1,4-polyisoprene) and clay 

(montmorillonite) with the presence of organic cations of different nature.  

As the model pendant group for the present study these were taken four organic cations (ammonium 

ions), namely CH3-(CH2)7-NH3
+ , CH3-(CH2)17-NH3

+ (octadecylammonium ion), C6H6-CH=CH-(CH2)17-NH3
+ 

 183



(vinylbenzyl-octadecylammonium ion), CH3-(CH2)37-NH3
+ ions. Totally QM optimized structures of these 

organic cations are presented in the fig.42. 

 

 

 

 

 

a 

b b 

c 

d 

Figure 4.42: Structures of quantum-mechanically optimized pendant groups which were studied in rubber-clay 

system: CH3-(CH2)7-NH3
+ (a), CH3-(CH2)17-NH3

+ (b), C6H6-CH=CH-(CH2)17-NH3
+ (c), CH3-(CH2)37-NH3

+ (d) 

ions; -NH3
+ groups are marked by circles. 

 

Adsorption complexes of model montmorillonite cluster, which is presented in the fig.4.41, with all of 

these organic cations have been constructed and optimised in quantum mechanical approach with total space 

optimisation. Corresponding structures are presented in the fig.4.44 together with intermolecular distances 

between clay platelets. 

Two pendant groups of each chemical structure were inserted into the interlayer space between two 

platelets of clay replacing several calcium ions and water molecules, located primarily in the inter-platelet zone. 

Each cation is grafted onto clay surface with formation of several H-bonds between H atoms of –NH3
+ group 

and O atoms of silica tetrahedra. As it is seen from this figure clay platelets very slightly change their 

intermolecular distances regarding to the clay model without pendant group (from 11.21 to 11.24 A) remaining 

parallel manner of orientation of platelets in the case of the smallest organic cation CH3-(CH2)7-NH3
+. Setting 

CH3-(CH2)17-NH3
+ and C6H6-CH=CH-(CH2)17-NH3

+ groups in the zone between platelets leads to some swelling 
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of clay structure (intermolecular distances are growing up to 14.19 and 15.76 A respectively) and loss parallel 

orientation of the platelets the effect, which is more remarkable in latter case. Interaction several of long and 

knot-like CH3-(CH2)37-NH3
+ particles with clay leads to remarkable growing up inter-platelet distances and loses 

parallel orientation of clay platelets. 

 

 

 

a 

b 
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Figure 4.43: QM optimised structures of adsorption complexes of model two-layered cluster and organic 

cations: CH3-(CH2)7-NH3
+ (a), CH3-(CH2)17-NH3

+ (b), C6H6-CH=CH-(CH2)17-NH3
+ (c), CH3-(CH2)37-NH3

+ (d) 
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ions; -NH3
+ groups are marked by circles. Hydrogen bonds in the system are marked by dotted lines. Calcium 

ions are represented by large spheres. 

 

4.2.3.3. Quantum-mechanical investigation of interaction of polyisoprene and modified montmorillonite. 

Interaction of model polyisoprene molecule, which is presented in the fig.4.40 with all organo-clay 

systems, which were modeled in the previous step of study, was studied in quantum mechanical approach. 

Microscopic structure, energetic and microscopic force-of-adhesion characteristics were calculated for the 

model adsorption complexes, presented in the figure 5. These complexes consisted from one or two molecules 

of cis-1,4- polyisoprene CH3-[CH–C(CH3)=CH–CH2]n– CH3, where n=10, on the one hand, and from two-

layered montmorillonite cluster with two ammonium ions and several Ca2+ ions and water molecules in the 

interlayer space of clay on the other hand. 

 

 

a 
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d 

e 

Figure 4.44: Totally optimised structures of adsorption complexes of one or two molecules of cis-1,4- 

polyisoprene CH3-[CH–C(CH3)=CH–CH2]n– CH3, where n=10 and of two-layered montmorillonite cluster with 

two ammonium ions and  several Ca2+ ions and water molecules in the interlayer space of clay. Rubber molecule 

is marked by yellow color. The complexes differ by chemical structure of organic cations: CH3-(CH2)7-NH3
+ (a), 

CH3-(CH2)17-NH3
+ (b), C6H6-CH=CH-(CH2)17-NH3

+ (c), CH3-(CH2)37-NH3
+ (d). For comparison an analogical 

system but without pendant ion is presented (e) 
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The following microscopical energetic and mechanic characteristics were calculated for each of 

adsorption complexes under study: enthalpy of binding ΔHbind of polyisoprene with organo-clay, i.e. with 

montmorillonite model together with Ca2+ ions, water molecules and together with ammonium ions, which 

provide ‘organophilic’ character of clay surface and force of microscopical friction Fshift, as characteristic of 

microscopical friction or change of microscopical cohesion of the rubber chain with displacement of the 

polymer chain along the surface of montmorillonite particle covered by organic cations and water. Both values 

were calculated per one polyisoprene monomer unit -[CH–C(CH3)=CH–CH2]n–. The obtained results are 

collected in Table 4.8. 

 

Table 4.8. 

Structural, energetic, and force characteristics of polyisoprene-montmorillonite model complexes with different 

pendent groups in clay inter layer  zone 

System 
according to the 
figure 5 

Distanc
e between clay 
layers, A 

Parallel 
orientation of clay 
platelets 

ΔHbind, 
kcal/mol 

Fshift,, 
kcal/mol*A 

a 11.27 yes -1.9 9.6 

b 14.53 no -8.7 33.3 

c 16.04 no -7.9 31.9 

d 33.54 no -1.3 8.7 

e 11.23 yes -1.6 9.1 

 

4.2.3.4. Quantum-mechanical investigation of triple system: natural rubber – amorphous carbon – 

montmorillonite. 

As some short example we present here the additional results in which two-filler system for natural 

rubber is examined. The idea was to use together carbon black (soot) and natural clay (montmorillonite) for 

making rubber-based nanocomposites with better mechanical properties. 

As filler agent was taken the model, which is presented in the fig.4.45,a, corresponding adsorption 

complex of this filler component with the same rubber model is presented in the fig.4.45,b.  
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a 

b 

Figure 4.45: Totally optimised structure of adsorption complexes of model two-layered cluster and organic 

cation CH3-(CH2)17-NH3
+, Calcium, water together with soot particle without (a) and with (b) rubber chain. 

 

As it is seen from the structure of rubber-filler complex, obtained after the total optimization in QM, such kind 

of ‘close’ interactions can provide unique mechanical properties of nanocomposite. Rubber chain easily 

penetrate between clay layers with the help of interaction with carbon particle, filler particles delaminated and 

nanocomposites with exfoliated structure and very strong hydrophobic contacts both with clay and carbon black 

(calculated ΔHbind, is -12.3 kcal/mol and Fshift, is 45,2 kcal/mol*A) can be achieved. Such kind of filler 

synergism also is an interesting topic for QM modeling in framework of presented approach. 
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4.3. INVESTIGATION OF A MICROSCOPIC STRUCTURE AND PROPERTIES OF POLYMER - 

TECHNICAL CARBON COMPOSITE USING MOLECULAR DYNAMIC METHOD 

 

4.3.1. Introduction 

The microscopic structure, some energetic characteristics, and also the behaviour in time of polymer - 

technical carbon composite were considered in the framework of molecular dynamic (MD) approach.  

The behaviour of individual chains of polymer matrix in vacuum and water environment has been 

studied. Molecular models of polymer of a various degree of polymerisation were considered. Conformation 

possibility for polymer molecule to come to knot-like structure was studied at the lengthening the molecular 

chain.  

Also interaction of filler particle, namely, a model particle of amorphous soot with partially H-terminated 

surface and structure received in preliminary quantum mechanical modelling, with polymer matrix was 

investigated. Polythene and polyisoprene was considered as polymer components. Correspondent polymeric 

components represented one chain of polymer, one layer of polymer matrix and several layers of polymer 

matrix with flat and parallel each other structure. Filler particle was inserted either above these layers or in-

between latter. In the course of the modelling an attempt to establish difference of a microscopic structure of 

complexes of particles of amorphous carbon with polythene and polyisoprene was done keeping in the mind that 

only polyisoprene is rubber among considered polymers.  

An impact of water, which was considered in MD modeling in explicit (molecular) model, on interactions 

in system polymer - amorphous carbon was as well investigated. Adsorption complexes consisting of soot 

particle, some tens molecules of water and (a) one chain, (b) one layer and (c) two layers of polymer were used 

as the models in this case.  

 

4.3.2. Method of modelling 

Calculations in work were fulfilled within the software package on molecular dynamics CHARMM29 

which has been received from authors (The CHARMM Development Project, Professor Martin Karplus, 

Department of Chemistry & Chemical Biology, Harvard University) and it is licensed. This package represents 

the most developed, fast and theoretically proved on the present moment program on molecular dynamics (Neria 

E., Fischer S., Karplus M., 1996). This program is based on modern force fields CHARMM22 and MMFF 

(Merk), which yield correct qualitative and quantitative results (MacKerell A.D., Bashford D., Bellott M., 

Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., 

Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher III W.E., Roux B., 

Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M., 

1998). This program includes GBorn (Generalized Born) continuum environment model (Still W.C., Tempczyk 

A., Hawley R.C. Hendrickson t., 1990) which now also is considered as one of the most theoretically proved 

models of solvent. In calculations there is an opportunity, if necessary, to place partial charges on atoms of 

molecular models, receiving them directly from preliminary quantum mechanical calculation that allows 

improving parameterisation of the method.  
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The scheme of molecular dynamic calculation of molecular system (one MD start) consists in the 

following:  

1. minimization of the structure, 1000 steps 

2. heating of the system up to 300K (3ps, step is 1fs) 

3. equilibration for 50ps 

4. computation of MD trajectory 600 ps during which molecular system is relaxing. Record of 

coordinates is performed through everyone 10 steps 

Using received trajectory dynamics of system in time is considered. Geometrical and energetic 

parameters of system are received at the equilibrium in the end of a trajectory. All molecular systems have been 

calculated in the present work using such scheme. 

 

4.3.3. Molecular dynamic investigation of behaviour of individual polymer chains of various lengths in 

vacuum and in the water environment 

Molecular dynamic (MD) calculations have been performed for polythene oligomers, i.e. for individual 

model chains of polyethylene with a various degree of polymerization (from 6 up to 100), the number of 

monomer units of polymer chain increased by one. These calculations were done with MMFF force field both in 

vacuum and in GBorn continuum model. 

Calculations in GBorn continuum environment were fulfilled for molecular systems with MMFF charges, 

and also with partial charges on atoms of polymer chain received in quantum mechanical calculation by 

program MOPAC. Necessity of setting additional charges is caused by peculiarity of MMFF force field, in 

which partial charges on hydrocarbon atoms are accepted equal to zero that often leads to some realistic results. 

Obtained trajectories allowed calculating the mean distance between ends and corresponding RMSD for each 

molecule.  

An example of polymer conformation received in the end of MD trajectory is presented in the fig.4.46. 

 

Figure 4.46: Structure of polythene oligomer with 30 monomer units received in the in the end of molecular 

dynamic trajectory. 

 

It was obtained that there is almost no difference between trajectories in vacuum and in GB for molecules 

without partial atomic charges. This could be explained with the fact that GB influences only on electrostatic 

interactions. 
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Differences were observed for GBorn modelling both with partial atomic charges and without. In the 

fig.4.47 the dependence of mean distance between the ends of polymer <l> from number of monomer units (-

CH2-) n is presented. The polyethylene could be described with freely jointed chain model. This implies that <l> 

should be proportionally to the square root of n. 

For the short chains (number of units n=6-15) this dependence is approximately linear. The visualization 

of MD trajectory shows that these molecules almost don’t experience any conformational changes. Only longer 

chains move more freely and form balls or knots with polymer properties. This could be also illustrated with 

dependence of RMSD <l> on n (see the fig.4.48). 

Fluctuation in some points could be seen. This could be explained with the fact that during the MD 

trajectory some long molecules could form balls with the shape, making further motions labored, bothering to 

change freely distances between the terminal carbon atoms of molecule (keeping it close or distant to each 

other).  

 

Figure 4.47. Dependence of mean distance <l> between polyethylene oligomer molecule ends from number of 

monomer units n in a molecule. 

 

Figure 4.48. Dependence of root mean square distance (RMSD <l>) between polyethylene oligomer molecule 

ends from number of monomer units n in a molecule. 
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We have seen that for the longest molecules (C70-C100) the value of <l> lowers and it could be hardly 

referred to as a fluctuation. This is the representation of the fact, that non-polar molecules are unfavorable in 

polar solvent (GB model represents a water solvent) and the balls of polymer are being “compressed” to make 

the surface of contact with solvent less. In this case values of <l> for molecules carrying partial atomic charges 

are higher than for molecules without atomic charges because they are more polar and hence are favorable in 

GB solvent. Thus, for reliable modelling of polymeric chains they should be large enough with polymerization 

degree of the order of several tens. 

 

4.3.4. Molecular dynamic investigation of interaction of an individual polymer chain with amorphous 

carbon particle 

This part is devoted to studying of interaction of amorphous soot particle with one chain of polythene and 

polyisoprene. 

The structure of amorphous carbon particle of was received from quantum mechanical calculation (PM3). 

It was a cluster of amorphous carbon with sp3-/sp2-hybridization, with 170 carbon atoms and partially 

terminated by hydrogen surface.  

Oligomer molecules of polythene and polyisoprene with 50 monomer units were considered as models of 

chain for both polymers so the molecule of polyethylene contained approximately 300 atoms and polyisoprene ~ 

700 atoms. Linear conformations of oligomer molecules were taken as initial structures. Preliminary MD 

calculations for each of polymer molecules in free state have been performed. Received MD structures of single 

polymer molecules are presented in the fig.4.49. As it is seen from obtained MD results both molecules 

polyethylene and polyisoprene achieved complicated ball-like or knot-like structures of polymer chains.  

 

 а)  b) 

Figure 4.49: MD structures of polymer molecules: (a) polyethylene, (b) polyisoprene. 

 

Adsorption complexes of model soot particle with single polymer chain were also calculated starting from 

linear configuration of polymer chain. Obtained after MD modeling structures of these complexes are presented 

in the fig.4.50. 
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 а)  b) 

Figure 50: MD structures of adsorption complexes of carbon particle with single polymer molecules: (a) 

polyethylene, (b) polyisoprene. 
 

It was obtained that received MD structures of adsorption complexes of polyethylene and polyisoprene 

are distinctly different. If the molecule of polyethylene after various conformational changes is bended into a 

knot or ball in a contact with carbon particle (also as well as in the case of absence of carbon particle), the 

molecule of polyisoprene has kept the linear geometry in a greater degree at the presence of carbon particle. 

Average intermolecular distances in case of interaction carbon particle and polyisoprene molecule have 

appeared a little shorter (RН..Н=2.3-2.5A), than in case of polyethylene (RН..Н=2.5-2.8A). For more careful 

investigation of distinctions in interaction of carbon particle with polyethylene and polyisoprene the quantitative 

calculation of interaction energy of soot particle with these single polymer chains has been lead. Calculated 

energies of interactions ∆Etotal at equilibrium part of MD trajectory are presented in fig.4.51.  
 

 

а 

 

b 

Figure 4.51: Interaction energy of carbon particle with single polymer chain of polyethylene (a) and 

polyisoprene (b) at equilibrium part of MD trajectory. 
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As it is seen from the received results it is visible, that interaction of carbon particle with polyisoprene is 

energetically more favourable, than with polyethylene. Indeed, calculated average value of interaction energy of 

polymer - carbon particle has appeared equal -20.05 kcal/mol and -27.82 kcal/mol for polyethylene and 

polyisoprene, respectively.  
 

4.3.5. Molecular dynamic investigation of interaction of polymers layers with amorphous carbon particle. 

Interaction of amorphous carbon particle which structure was discussed in the previous part of work, with 

polymer layers was studied. Polyethylene and polyisoprene have been taken also as polymer component. 

As polyethylene component was taken a model represented two layers in parallel orientation having some 

distance in-between. Each layer was constructed from 10 single molecules of polyethylene chains; each chain 

contained 50 monomer units. Thus, this model contained at about 6000 atoms. The initial structure of polymer 

layers has been taken flat. Interaction of carbon particle placed between these two layers of polyethylene was 

calculated in MD. The structure of the adsorption complex received during MD modelling is presented in the 

fig.4.52. As it is visible from the figure initial flat structure of polyethylene was not kept in time. Polyethylene 

component represents amorphous complex knot with soot particle of immersed in it. 

 

Figure 4.52: MD structure of adsorption complex of carbon particle with two layers of polyethylene/ 

 

Some models of layered polyisoprene matrix have been considered. In the beginning the case when the 

model of a polymer matrix represented one flat layer of polyisoprene chains, consisting from 9 chains was 

considered. Each chain contained 50 monomer units. MD modelling of such layer without adsorption carbon 

particle leaded to the structure presented in the fig.4.53. From the received data it is visible, that the layer of 

polyisoprene chains revealed great strength may be due high intermolecular Van-der-Waals interactions. Indeed, 

it has a tendency to keep a regular flat structure better than an individual polyisoprene chain and much better 

than layers of polyethylene chains, which at similar modelling pass very quickly into amorphous state. 
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Figure 4.53: MD structure of one polyisoprene layer in absence of contact to carbon particle. 

 

At addition of carbon particle to such flat polyisoprene layer followed by MD calculations an adsorption 

complex was found, which structure is presented in the fig.4.54. Thus it was received that addition of soot 

molecule stabilized polyisoprene layer, at which it was not observed tendencies to bending. Polyisoprene layer 

in this case remained, practically, flat, and did not “envelop” carbon particle. Some fluctuations and bends of 

polymer chains occurred only on a border of polymer layer were intermolecular interactions with neighbours 

were not compensated.  

 

Figure 4.54: MD structure adsorption complex of carbon particle with one polyisoprene. 

 

Further the case when the polymeric matrix represented three parallel layers of closely interacting 

polyisoprene chains has been considered. The degree of polymerization of each chain was 10; each layer 

contained 10 parallel chains. MD calculation of such model in a free state has shown, that the structure of 

polyisoprene layers is very stable and does not undergo some essential changes in time. Polyisoprene revealed 

nonpolar intermolecular contacts between chains that are strong enough to keep regular structure of a polymer 

matrix. MD optimized structure these three polyisoprene layers in absence of carbon particle is presented in the 

fig.4.55. 
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Figure 4.55: MD structure of three interacting polyisoprene layers in absence of contact to carbon particle. 

 

An addition of soot particle to such three polyisoprene layers (the molecule of soot has been placed on a 

surface of layers) and the further MD optimization did not lead to significant changes in a flat configuration of 

polyisoprene layers. The structure of corresponding adsorption complex is presented in the fig.4.56. 

 

 

Figure 4.56: MD structure of adsorption complex, in which carbon particle is placed on a surface of three 

interacting polyisoprene layers. 

 

MD modelling has shown, that adsorption complex of layered polyisoprene and soot particle is very 

stable, the flat structure of polyisoprene layers is kept better, than that of polyisoprene matrix without filler. The 

molecule of soot has remained adsorbed on a surface of polymer. Since modelling was spent in vacuum, the 

environment did not impact on polar interactions. 

Besides for polyisoprene matrixes model have been taken two layers of polyisoprene chains, each of 

which consisted of 9 chains with 50 monomer units. These two layers were located on some distance to each 

other and had parallel orientation. For this model interaction of carbon particle with polymer layers also was 

investigated. The carbon particle was located between these layers. MD modelling has been performed for such 

complex; the received structure is shown in the fig.4.57. From the received data follows, that in this case also 

the carbon particle rendered stabilizing impact on polyisoprene matrix. Polymer layers at the presence of carbon 

particle keep flat parallel structure, and only on borders of a layer insignificant bends of polymer chains are.  
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Figure 4.57: MD structure of adsorption complex in which the carbon particle is placed between two 

polyisoprene layers. 

 

4.3.6. Molecular dynamic investigation of water influence on interaction of polyisoprene with carbon 

particle  

Investigation of water influence on adsorption of soot particle on polyisoprene has been carried out. The 

systems containing water in explicit (molecular) model can achieve MD relaxation extremely slowly, therefore 

tong-time 10 nanoseconds MD runs of the systems consisting of carbon particle, several water molecules and 

polyisoprene component were performed.  

In the beginning the case when the single polyisoprene chain interacted with soot particle and several 

water molecules was considered. Here water molecules were placed in the place-of-contact of filler particle and 

polymer. An example of MD optimized structure is presented in the fig4.58. If to compare this structure with 

similar, but received in absence of water molecules (see the fig.4.50), it is seen, that polyisoprene component 

kept the ordered structure less at presence of water  

 

 

Figure 4.58. MD structure of adsorption complex consisting of carbon particle, polyisoprene chain and four 

water molecules. 

 

The number of water molecules varied from 1 up to 5. Thus calculation of interaction energy dEtotal,, for 

all five adsorption complexes containing different quantity of water molecules was performed. Results of MD 

calculation are presented in the fig.4.59,a-e. In the same figure (4.59,f) the similar calculation received for 
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system polyisoprene carbon particle without water is presented for comparison. On most lengthening parts of 

equilibrium dynamics average value of total energy was calculated, and its change with increase in number of 

water molecules in adsorption complex is presented in the fig.4.60. On the base of received results the 

conclusion can be drawn up, that water acts on system of polyisoprene matrix - carbon filler as destabilization 

agent. The structure of polyisoprene layers in adsorption complex with carbon particle re-ordered in the 

presence of water, and energy of polymer-filler interaction decreased. 

 

a b 

d c 

f e 

 

Figure 4.59: Interaction energy of dEtotal received during MD calculation for five adsorption complexes 

containing carbon particle, polyisoprene molecule and different number of water molecules: 1 - (a); 2 - (b); 3 - 

(c); 4 - (d); 5 - (e); (f) - the same system, but in absence of water. 
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Figure 4.60: Change of average value of total interaction energy in systems of carbon particle - water - 

polyisoprene at increase in number of water molecules. 

 

The similar conclusion can be made on the base of MD modelling, which was fulfilled for two other 

models of adsorption complexes of carbon particle and isoprene matrix. The first model represented carbon 

particle interacting with one flat polyisoprene layer contacting with 20 water molecules. This model is similar to 

those presented in the fig.4.54 with the difference that water is placed between polymer and filler. The second 

model consisted of the carbon particle placed between two polyisoprene layers; 40 molecules of water in this 

model is placed in the field of contact of polymer with filler. This model is similar those presented in the 

fig.4.57, but at it also contain water layers between polyisoprene and soot. MD structures of these complexes are 

presented in the figs.4.61 and 4.62.  

Results of MD calculations displayed that introduction of water in polyisoprene – soot system 

destabilized the system. The structure of polymeric layers becomes a little more disordered, average 

intermolecular distances between carbon particle and polyisoprene grow up from RН..Н=2.3-2.5A до RН..Н=2.8-

3.3A and calculated interaction energy of polymer-filler complex decreased on 30-40 %. 

 

Figure 4.61: MD structure of the complex consisting of carbon particle, polyisoprene layer and an intermediate 

water layer. 
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Figure 4.62: MD structure of the complex consisting of carbon particle, two polyisoprene layers and an 

intermediate water layer. 
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GENERAL CONCLUSIONS: 

 

1. A new approach to model and investigation of texture and mechanical characteristics of large molecular 

systems in frame of Monte-Carlo method has been developed. As a base of the method is an unorthodox 

algorithm allowed to make a classical Metropolis procedure for a few polymer molecules. Algorithm under 

consideration belongs to class of program which use space decomposition and has high grade of 

calibration. Energy of intermolecular interactions is calculated by method of atom-atomic potential 

functions taking into account the electrostatic interactions. Energy of internal molecular interactions 

(energy of stresses of chemical bonds, valent and torsion angles) calculated on the base of parameter 

AMBER data-set. Computational experiments with molecular systems keeping up to 104-106 atoms have 

been made on computational complexes MVC-1000M and MVC-5000M (Moscow). It was used from 8 up 

to 729 processors. 

2. The structures of model mixtures of n-pentane and carbon microclusters C38 (graphite type) as prototype of 

reinforced polymer composites have been investigated. It was stated, that at distance bigger than Van-der-

Waals radius C38 (~7A) carbon microclusters construct stacking self-associates keeping up to 18 molecules 

of C38. Axis of such stacks orient to graphite surface arbitrarily. 

3. It was shown the strong dependence the grade of associate of carbons microclusters on form of its surface. 

So, the particles of amorphous carbon C38 form into pentane relatively bulk associates which content about 

3-4 particles. 

4. Chemical modification of components of mixture influence substantially on structure and mechanical 

properties of materials under study. So, aquation of carbon microclusters leads to decreasing the middle 

value of potential energy of particles. 

5. It was stated, that nanolayers of water condensate, which happens in moist atmosphere on the carbon 

surface, can substantially influence on efficiency of interactions the particle of filler with surrounding 

polymers, and alters the mechanical properties of composite material. 

6. We proposed the method and investigated a mobility of polymer molecules close to surface of particle of 

filler. It was fixed the presence of layer with limited mobility around area of contact “polymer – graphite”. 

7. It was developed the method of evaluation of shear modulus for composite microcluster during the model 

by Monte-Carlo method. 

8. In the course of the modelling it was obtained that the force of “shift deformation” (or of intermolecular 

friction) for the system of polymer - polymer is equalled approximately 4 kcal/mol*A, and the similar force 

characteristic for the system of polymer - carbon particle is equalled approximately 10-12 kcal/mol*A. At 

the same time the value of destroying force for a polymeric chain is equal approximately 80-100 

kcal/mol*A for individual polymer, and at about 2 times less for polymeric chain being in a contact with 

filler surface (see discussed above results). 

Thus cohesion strengthening of organic polymer chains on the surface of carbon fillers was revealed in a 

framework of quantum-chemical study. Maximal force of tearing off polymer particle adsorbed on carbon 

surface was found approximately 3 times higher than for polymer in a polymeric matrix. Owing to rather 
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weak however quite sufficient for immobilization of polymeric chain segments on the carbon surface Van-

der-Waals forces, around carbon filler particle some condensed layer of rubber is formed with the lowered 

mobility of chain segments which most likely is responsible for strengthening of organic polymers by 

filling them with high dispersed carbon. 

9. As it is seen from the results the enthalpy of binding of one monomer unit -СН2- with carbon surfaces 

decreases in the row: С1>С2>С3>С4, so thus the less energetic favorable contact was obtained for 

adsorption complex of polymer –graphite surface (C1), and the most energetic favorable contact was 

obtained for adsorption complex of polymer –surface (C4), with carbon in sp2/sp3-hybridization with non 

regular defected surface, containing some holes. Calculated forces of microscopical friction confirm the 

previous state. Thus the force of shift deformation is minimal for microscopical friction of the segment of 

polymer chain along the regular graphite surface (C1), and maximal for the case of the most defected 

surface (С4), being at about 2.5 times higher. The first results, presented in this stage show the abilities of 

such kind of computational modeling, and in the further study it is interesting to make more detailed 

ranking of carbon particles with accordance to defection structure of their surfaces and in some computer 

selection obtain structure of carbon particles, revealing the best effect of strengthening for organic 

composites. 

10. The results revealed that the force of shift deformation or shift friction in polymer matrix is 2-3 times 

lower, than the same force for molecular friction in the system polymer- surface of carbon particle. This is 

a reason of immobilisation of polymer chain on the surface of carbon. Moreover, calculations revealed that 

force of shift friction increases in the row of adsorption complexes with the models: C1<C2<C3<C4, so 

that the minimal value of shift force was obtained for regular C1 graphite surface and the maximal – for 

more defective surface C4. 

11. Thus, from the received data it is visible, that the most energetically unfavorable contact is received for the 

system polymer - graphite surface (С1). The most energetically favourable contact is received for a case of 

adsorption of polymer on a surface in the sp2/sp3-carbon hybridization, having holes and five-ring defects 

(С4) on which fragment of polymer  chain immobilized better, and, hence, which has the best strengthening 

properties as filler for rubber composites. Summarizing in should be mentioned, that in the given section 

the technique offered earlier is tested on an example of calculation of molecular friction in the complex 

system consisting of organic polymer and carbon filler. 

12. It was obtained that enthalpy of binding of one monomer unit -СН2- with the H-modified carbon surfaces 

decreases in the same number, as for nonterminated carbon surfaces, namely in a row: С1_Н> С2_Н> 

С3_Н> С4_Н. Graphite surface (С1_H) was found as the energetically most-unprofitable contact for 

system polymer, and the most energetically favourable contact is received for a case of adsorption of 

polymer on H-terminated surface containing defects with atoms of carbon in sp2/sp3-hybridizations and 

having different holes in a structure. (С4_H). 

Consideration of the stress diagram of friction for studied surfaces also confirms the received energetic 

result. Force of shift of microscopic friction is minimal for a case of strictly periodic graphite surface 

(С1_Н). It is worth to mention that for nonterminated and H-terminated models the same result was 
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received. However if to compare the similar nonterminated and terminated defective surfaces force of 

microscopic friction along the terminated surface makes approximately 0.9-0.7 from force of microscopic 

friction along not terminated surface. Is of interest in the further during consecutive numerical quantum 

mechanical experiment to make more detailed ranging a surfaces of carbon particles on number and a kind 

of defects of a lattice of graphite and kind of its termination., Also by selection in computer design to 

establish a microscopic structure of a surface of technical carbon, optimum for the best strengthening 

effect. 

13. During quantum mechanical modelling it has been shown, that on nonterminated carbon surface there is an 

adsorption of individual water molecules which can be characterized as Van-der-Waals one: RС…О =2.0-

2.2A, ∆H~2-2.5 kcal/mol (calculated for one water molecule). Much weaker interactions of water 

molecules occur with nonterminated carbon surface: RН…О =2.5-2.8A, ∆H~1.3-1.5 kcal/mol (calculated for 

one water molecule). 

The H-bonded water drop does not spread on carbon surface, interacting with the latter as a unit. As it has 

been shown in QM calculations energy of hydrogen bonding OH … O in cluster, consisting of several 

water molecules is ∆Hbind~4 kcal/mol, that is, more, than energy of interaction of water molecule with soot 

surface, thus, is energetically proved clusterising of H-connected water molecules on soot surface. 

It was obtained that fragment of organic polymer interacts with nonterminated carbon surface at about 1.5 

times stronger than with H-terminated carbon surface. Water interlayer between polymer and carbon 

surface decrees strength of interaction in the system. The reinforcing effect of pure nonterminated carbon 

fillers is the best. 

14. Some conclusions could be done about impact of chemical nature of the polymer matrix on the interaction 

of the polymer segments with surface of soot fillers. The binding enthalpy and the force of shifting is 

determined mainly by square of hydrophobic contact between polymer fragment and surface of soot 

particle (i.e. by presence and number of СН2 и СН3 groups), and by the presence and number of 

electronegative atoms (O, N) in the polymer structure. Moreover the conformations of the polymer 

fragment on the interface, namely complementary character of its space structure with structure of soot 

surface impact also of the polymer adsorption. 

It was obtained that binding enthalpy and force of shifting of polypropylene in ~ 1.5 times higher than the 

same values obtained for polyethylene. It can be explained with greater square of hydrophobic contact 

between polymer fragment and surface of soot particle in the case of polypropylene. In the same time 

binding enthalpy and force of shifting of polurea in ~ 1.7 times higher than the same values obtained for 

polyethylene. Having at about the same surface of interparticle contact molecule of polurea oligomer has N 

and O electronegative atoms, which play the decisive role in the binding in this case. 

The most energetically favorable contact of the oligomers under study was obtained for polyvinyl acetate 

(~ in 2.0 times higher than for polyethylene) that can be explained by the impact of the two factors 

described above. This molecule has high square of hydrophobic contacts and also contains electronegative 

atoms O. 
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The lack of high adsorption capacity in the case of polyacrylic acid (it also has electronegative atoms O in 

the structure) can all means be explained by not favorable conformation of this molecule under adsorption 

on the soot surface, that can follow from not favorable geometry of the corresponding adsorption complex 

for realization both hydrophilic and hydrophobic contacts. This oligomer revealed small value of binding 

enthalpy. 

Analogical values, obtained for H-terminated soot surface, revealed the same regularity for different kinds 

of polymers however in a total binding enthalpies and forces of shifting are at about 0.7 times less than for 

nonterminated surface. 

15. As it is seen from the results the strong interaction is observed in the case of interaction of nonterminated 

carbon surfaces. It leads in some cases to the formation of new covalent bonds C-C between the former 

soot particles. Thus the initial protoparticles of the amorphous carbon with nonterminated surfaces interact 

with each other forming larger molecular structures, which can not be easily divided into the initial 

particles, but which kept in the main details their initial structure. 

In the case of carbon particles with H-terminated surfaces much weaker interaction of the particles was 

obtained. Hydrophobic H…H interactions keep interacted particles at the H…H distances at about 1.6-

1.7А. Binding enthalpy and forces of intermolecular shifting are enough for interparticle agglomeration. It 

is very likely that this kind of agglomeration can be destructed with an impact of adsorption interlayer 

between soot particles, which can be polymer or water. 

In the case of interaction of the soot particles, which surfaces are terminated by hydroxyls, interparticle 

agglomeration is determined by hydrogen bonding between particles. Minimal interparticle distances 

correspond to the standard hydrogen bonds (1.9-2.0 between Н and О atoms participating in H-bond 

formation). Aggregation or sintering of the soot particles is stronger than in the case of H-terminated soot 

surfaces, but possible can be destructed in water solution or in the presence of polymer matrix. 

In the case of interaction of the carbon particles, which surface is terminated by negatively charged COO- 

groups, particles are slightly repulsed, and aggregation is not taking place. (The shortest distance between 

particles is О…О 3.0-3.2, so the surface modification similar studied can prevent soot particles 

agglomeration if necessary. 

16. As it is seen from the results, aggregation of the soot particles can be prevented by adsorption interlayer of 

polymer between the soot particles. Adsorption of water in the interparticle interface can be considered as 

competitive process for polymer adsorption. For the formation of the contact polymer-filler water layer on 

the soot surface has to be removed. Energetic of these competitive processes is similar, and so for stronger 

adsorption of the polymer chains on the filler particles modification both polymer molecule and surface of 

the fillers has to be performed. 

17. Some conclusions can be obtained in the course of QM modeling in a framework of microscopic internal 

coordinate of deformation (MIC) and microscopic friction coordinate (MFC) approaches. 

Force curves of uniaxial tension for polyethylene, polybutadiene, and isoprene reveal the similar 

peculiarities. The first part of each curve of the low elongations corresponds to region of entropic torsional 

conformation changes of the polymer chain. It presents the low forces of the deformation The second part 
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of each curve represents Hook’s or enthalpic region of elongations of the polymer chain. In this part 

elongation of the valence bonds occurs mainly. This region is characterized by considerable growing up the 

force of deformation. Maximum value of the deformation force corresponds to the critical force of polymer 

bond rupture. 

In the row of polyethylene, polybutadiene, and isoprene considerably elongating the enthalpic region and 

decreases the critical force of polymer bond rupture. Thus the growing up the elastic character of the 

polymer chain in the studied row is revealed. Isoprene shows the most elastic properties corresponding to 

the obtained force regularities. 

Place of the polymer chain rupture occurs in each case in the vicinity of the surface of carbon particle being 

in the contact with the polymer molecule. The rapture of the polymer chain passes via cyclic transition 

complex with participation of the carbon surface active groups. Thus the destruction of the polymer chains 

in filled rubbers occurs mainly, by all mean, in the places of polymer contact with the filler particles. 

The best cohesion with carbon particle surface (the highest forces of microscopic friction) was obtained for 

isoprene molecule representing branchy and flexible chain, and the worst one was found in the case of 

polyethylene molecule. Hence the best reinforcement can be reported for the combination of isoprene-

amorphous carbon and the worth for system polyethylene-amorphous carbon. 

Obtained dependencies of polymer molecule cohesion with carbon particle surface (or of the highest forces 

of microscopic friction) are in a good accordance with calculated geometrical and energetic characteristics, 

which confirm the best effectiveness of isoprene-amorphous carbon composite system as filled rubber. 

18. In the course of QM modeling some conclusions can be done concerning the impact of chemical nature of 

the filler particles on the interaction of the polymer segments with surface of fillers. The binding enthalpy 

and the force of shifting are determined mainly by hydrophobic contacts between polymer fragment and 

surface of filler particle. Moreover the conformations of the polymer fragment in a contact with filler 

surface, namely complementary character of its space structure with structure of filler affects also on the 

polymer adsorption. The best cohesion of isoprene chain with filler particle surface (the highest forces of 

microscopic friction) was obtained for the system isoprene-silica. A little worth is cohesion of isoprene 

with carbon black or soot. Such fillers as fullerene and high-dispersed carbon tubes represent lower forces 

of adhesion, being practically similar with a little preference of the latter. Thus quantum mechanical 

modeling can provide us with information about ranking of filler particles with respect to their chemical 

nature and structure, and allows making some recommendations concerning surface modification of fillers. 

19. As it is seen from the obtained results enthalpy of binding of rubber chains on a clay surface and force of 

microscopical friction in this system, which interconnected with cohesion is strongly depended on 

modification of clay surface by hydrophobic agent (organic cation). If there is not cation exchange in clay 

interlayer (case e), and surface of latter reveals hydrophilic properties, there is not any expansion or 

swelling of clay structure in a contact with rubber, since rubber chains practically cannot penetrate between 

clay platelets, and delamination of clay layers does not observed. In this case rubber and clay can form only 

conventional, in the best case intercalate composites that do not possess high mechanical and wear 

capacity. Practically the same result can be obtained if take rather short alkylammonium surface agent for 
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modification of clay platelets (case a). At application of organic cations with too long chains, these huge 

molecules can locate between clay platelets filling all filler surface area by some kind of hindered knot. In 

this case delamination of clay layer could be observed, but immediate contact of rubber chains with clay 

particles is inconvenienced. In this case also the formation of composites with good mechanical properties 

is problematic. The best case can be observed if use organic cations with middle-sized chains at about 15-

20 monomer units and various modification of uncharged end providing better hydrophobic binding with 

rubber chains (cases b and c in current study). Such kind of alkylammonium cations promote expansion of 

clay structure, rubber chain penetration between clay platelets, delamination of clay sandwich-like structure 

and finally they provide the formation of exfoliated rubber-clay composites where clay platelets are 

completely delaminated and do not show any periodicity in their arrangement. Taking into account high 

values of calculated enthalpies of rubber-clay binding and microscopical forces of cohesion it can be 

proposed that nanocomposites in this case can reveal high mechanical and wear capacities. Thus using 

computational experiment which is done from the first principles taking into account chemical nature of all 

components of nanocomposites the goal-seeking search of best ‘partners’ can be done in silico, some times 

much faster than in experiment. Of course, experimental verification of the main results has to be done. 

20. As it is seen from the structure of rubber-filler complex, obtained after the total optimization in QM, such 

kind of ‘close’ interactions can provide unique mechanical properties of nanocomposite. Rubber chain 

easily penetrate between clay layers with the help of interaction with carbon particle, filler particles 

delaminated and nanocomposites with exfoliated structure and very strong hydrophobic contacts both with 

clay and carbon black (calculated �Hbind, is -12.3 kcal/mol and Fshift,, is 45,2 kcal/mol*A) can be achieved. 

Such kind of filler synergism also is an interesting topic for QM modeling in framework of presented 

approach. 

Thus quantum mechanical modeling can provide us with information about interconnection of 

nanocomposite mechanical characteristics and chemical nature of their components, and allows making 

some recommendations concerning choosing the fillers, their surface modification and application of 

combination of different fillers. 

21. During molecular dynamic modelling distinction in behaviour of polythene and polyisoprene is revealed at 

their interaction with carbon fillers. The polyethylene matrix significantly changes the configuration in time 

and is always turned off in a ball of chains, both in case of contact with carbon filler, and in case of its 

absence. Systems with polyethylene matrixes, practically, do not keep initial structure and quickly pass in 

an amorphous condition, being aggregated around of soot filler particle. Polyisoprene chains, on the 

contrary, in many respects keep initial structure in time and introduction carbon filler in the system 

strengthens this tendency. Polyisoprene component is stabilized at the presence of carbon filler. This 

conclusion leads from both structural, and energetic results of MD calculations. 

22. Introduction water into system of polyisoprene - carbon destabilizes corresponding adsorption complexes 

however in this case systems keep enough ordered the structure. 

23. During the molecular-dynamic modelling it was shown, there is the discrepancy between behaviour of 

polyethylene and polyisoprene chains under their interaction with carbon fillers. The polyethylene chains 
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sharply change their configuration on time and always furls into ball both in case of contact to carbon 

particles and without. Materials with polyethylene matrix practically do not keep an initial configuration 

and quickly jump in amorphous condition, aggregated around carbon particle. 

Polyisoprene chains, contrariwise, keep initial structure and injection into system of carbon filler deepens 

this tendency. Polyisoprene’s component is stabilized in presence of carbon filler. As structural so energetic 

results of molecular dynamic calculation testify about. 

24. Injection into composite system polyisoprene – carbon filler some water destabilizes appropriate adsorption 

complexes, but at this case the system keeps the shape of its structure pretty long. 
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5. EXPERIMENTAL INVESTIGATIONS OF STRUCTURE AND RHEOLOGICAL PROPERTIES OF 

ELASTOMERIC MATERIALS FILLED WITH DISPERSE PARTICLES. 

 
In order to verify the adequacy of above theoretical approximation for prognosis of the mechanical 

properties of viscoelastic heterogeneous media filled with the active filler the set of experimental tests for model 

samples were made. We have chosen the samples of natural rubber (SVR-3L type) filled with the different sorts 

of technical carbon (N220, N660, N339, N330, N550). Technical characteristics of above technical carbons 

correspond to international standard (ASTM D 1765) and indicate in Table 5.1.  

Table 5.1. 

Basic characteristics of different types of technical carbon (ASTM D 1765). 

Marking of technical carbon N 339 N 220 N 330 N 550 N 660 

Iodine absorption number 90±5 121±5 82±5 43±5 36±5 

OBP absorption number 120±5 114±5 102±5 121±5 90±5 

CTAB surface area 93±6 111±6 82±6 42±6 36±6 

Pour density, pelleted carbon 
black 

345±30 345±30 375±30 360±30 425±30 

pH value 6-9 6-9 6-9 6-9 6-9 

Heating loss at 105оС, max 0.9 0.9 0.9 0.9 0.9 

Ash content, max 1.0 1.0 1.0 1.0 1.0 

 

As it can see from the Table the fillers which we have used for investigation quite differ from each other 

on physical and chemical properties and first of all on value of specific surface area and therefore on size of 

particles. This circumstance allows us to prepare the full-scale analysis of an influence just that factor in light of 

reinforcement mechanism. 

One can remind that according to some theoretical prognosis it is having legible quadratic dependence of 

some mechanical characteristics, viz. elastic moduli, on diameter of the particles of an active filler. 

Experiments of this part of work were made on the samples of elastomers (natural rubber) filled with 20, 

40 and 60% by mass of technical carbon. All of samples were plastificated by stearin acid. 

 

5.1. MICROSTRUCTURE INVESTIGATIONS. 

It is obviously, that different theoretical predictions and prognosis must be supported some experimental 

verifications. First of all it concerns to direct experimental evaluation of structure and geometrical parameters of 

particles, aggregates or agglomerates of particles of active fillers as in initial state so inside a medium of 

polymer matrix. 

As it easy to see from the results of molecular modeling (see Part 4 of the present work) inside polymer 

matrix the particles of active fillers are able to form the aggregates with different configuration. For carbon 

particles a form of such kind aggregates depends, in particular, on structure of surface of separate particles (see 

data by Monte-Carlo modeling). From other side, the data of molecular modeling testify about formation 

interphase layer with specific properties which is located inside a disperse-filled polymer medium. 
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Above layer consists of molecules of polymer, which are adsorbed on the surface of solid phase and have 

an limited mobility (as it is typically for polymeric glassy state). At these conditions an effective surface of 

particles of filler is sharply increased, and simultaneity is increased a part of material with higher strength 

properties, because, as it is known, a polymer medium in glassy-state condition is characterized by bigger 

enough elastic moduli. 

For experimental tests of structure of microheterogeneous polymer medium some samples of technical 

carbons (see Table 5.1) and samples of row rubber compounds filled with above sorts of technical carbon have 

been used. 

Microstructure investigations have been made by Dynamic Force Microscope (DSM), (NanoSurfe model, 

Swiss) and Optical Interference Microscope New View 5000 (Zygo Inc., USA). 

In figs.5.1-5.5 one can show the results of microscopic investigations of structure of the carbon particles, 

which represent in Table 5.1. It is important to note the authors proposed new technology of preparation of 

samples for microscopic investigations, which allowed to get the necessary grade of detail of surfaces of 

samples under study. 

The structure of graphite particles for samples N220, which have been placed in view of DSM, exhibits in 

fig.5.1 (а – atop outlook, b – three-dimensional image). One can see, that carbon particles (white peaks) is 

evenly distributed on the model surface (there is no aggregation). 
 

 
Figure 5.1: Particles of technical carbon (sample N220), debarked on the model surface. Date of DSM: а) atop 

view, b) three-dimensional image. 

 

In fig.5.2 exhibits an individual carbon particle (sample N220) by magnification about 30 times more, 

than in fig.5.1. (atop view and three-dimensional image). It is clearly to see a form of particle, one can assign its 

size (about 220 nm). At fig.5.3 depicts a microscopic structure of carbon sample N330. It is clearly to see a 

formation of aggregate, consisted of two particles. 
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Figure 5.2: The carbon particle (N220), debarked on the model surface. Date of DSM: а) atop view, b) three-

dimensional image. 

 

 
Рис.5.3. The sample of structure of technical carbon (N330): а) atop view, b) three-dimensional image. 

 

In figs.5.4 and 5.5 exhibit the data of microscopic investigations of the samples N550 and N660. One can 

see, that they look as aggregates of particles, though during the preparation of the samples for microscopic 

investigations the carbon particles have been treated by ultrasound in order to avoid effect of adhesion. 
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Figure 5.4: The sample of structure of technical carbon (N550): а) atop view, b) three-dimensional image. 

 

 
Figure 5.5: The sample of structure of technical carbon (N660): а) atop view, b) three-dimensional image. 

 

In fig.5.6 is shown the data of microscopic investigations of structure for elastomeric compounds, that is, 

natural rubber and technical carbon N220. 

 

а) 
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b) 
 

c) 

Figure 5.6: Microscopic image of structure of elastomeric compounds consisted of natural rubber and technical 

carbon N220». а)-c) are the different grade of magnification. 

 

Pictures 5.6 (а-c) concern to the different grade of magnification. One can see from the pictures, that in 

elastomeric matrix the particles of technical carbon is aggregated (fig.5.6,а). Possibly, it arises by two reasons. 

Firstly during the mixing (milling) under influence of big stresses goes a convergence of carbon particles and 

they can incorporate under Van-der-Vaals interactions. Secondly, it is clear, that by interaction of carbon 

particles with molecules of natural rubber adhesion of molecules on the surface of particles occurs. In this case a 

formation of coating (film) on the surface of particles arises and under this reason an effective diameter of those 

increases, practically, in two times (compare fig.5.2 and fig.5.6,c). In this conditions a distance between nearby 

structures is contacted and adhesion between arises. 

One can note, that above situation is agreed with predictions of molecular modeling (method of molecular 

dynamics) (see figs.4.57, 4.61, Part 4). 

As the conclusions of this part of work we can note, that microstructure investigations of geometry of 

surface foundation of particles of disperse filler and aggregations of those inside elastomeric matrix (by DSM 
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method) give us very useful information for verification of theoretical and model evaluations of parameters of 

microclusters of composite polymeric structures. 

 

5.2. RHEOLOGICAL INVESTIGATIONS. 

Investigations have putted through by means of rheological equipment, RheoStress 150 (Haake Company, 

Germany, ISO 9001) under periodical deformation mode in wide range of frequencies (10-2-102 Hz), under 

different amplitude of deformation mode (10-5-0.5.101 Hz), under stationary deformation mode, namely – 

relaxation shear stresses and under different temperatures. 

Set of mechanical characteristics has been estimated, that is, the components of the complex dynamical 

modulus, namely, the storage and loss moduli, tangent of mechanical losses, the complex dynamical viscosity, 

the relaxation modulus, the compliance.  

The results let us to analyze some mechanical and relaxation dependencies for elastomeric composites 

filled with technical carbons in light of the variation of precise physical and chemical properties of technical 

carbon and to verify an adequacy of some relations predicted by theory which is developed. 

The results we have got (see previous stages of work for 2002, 2003, 2004 years) let us construct and 

analyze the most important relaxation dependencies of elastomer composites with disperse filler (row rubber 

mixtures) in connection with alteration of some physico-chemical properties of technical carbon and verified the 

adequacy of some expressions theoretically predicted before. 

One of the problem of fabrication of reinforced rubber composite, as it was seen from results of previous 

stages of work, is an optimal selection of ingredients for composite compound. In this aim is very perspective 

ideated the using of nano-size fillers, in particular, montmorillonite as prospective nano-size filler for rubber 

compound. It is obviously, that problem requires separate investigations. Nevertheless, in Part 4 we have 

discussed some physico-chemical and micromechanical peculiarities of interaction of montmorillonite with 

basic components of rubber compound and some methods of possible modification the surface of its in order to 

prevent an aggregation by injection in elastomeric matrix. 

In this part of work it is expediently to discuss some rheological characteristics of elastomeric compounds 

filled with montmorillonite in order to analyse the possibility of its using. This investigations has been made on 

samples of natural rubber, containing 20, 40, 60% by volume of montmorillonite. The samples have been 

prepared according to the same technology as in previous stages of above work (see the work for 2002-2003 

years). It was made the rheological characteristics above systems in wide diapason of alteration of frequencies 

(f), relative amplitude of deformations (γ ) by temperature 120оС (see fig.5.7). 
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Figure 5.7: Dependencies of rheological characteristics of storage G’ and loss G” moduli and tangent of 

mechanical losses tgδ  on frequencies f by small relative deformations 0.01γ =  and on values of γ  at constant 

frequency f=1,0 Гц for sample of natural rubber filled with 20, 40 and 60% by volume montmorillonite. 

Temperature Т=120оС. 
 

As it is easy to see in fig.5.7 the frequency dependencies of rubber mixture containing montmorillonite by 

small relative deformations ( 0.01γ = ), that is, in linear deformation mode, qualitatively very little differ from 
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the same curve for elastomeric matrix in the region of frequencies 100-102 Hz. That concerns to dependencies 

for storage modulus G’(f), loss modulus G”(f) and tangent mechanical losses tgδ (f). Below 100 Hz it is clearly 

to see a trend of magnification of G’ and G” and decline of tgδ  and it is explained by decreasing of fluidity of 

filled medium. 

Summarize one can note, the general view of behavior of the samples of natural rubber filled with 

montmorillonite seems as typical for media filled with non-active filler. The dependencies of G’, G” and tgδ  

on γ  as qualitatively so quantitatively are similar the analogical curves for elastomeric matrix, that is, for 

natural rubber. Above results is very understable from rheological points of view. They are typical for 

compounds filled with non-active components. 
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6. IDENTIFICATION OF PARAMETERS OF MODEL OF VISCOELASTIC MEDIA TAKING INTO 

ACCOUNT DATA OF EXPERIMENTAL INVESTIGATIONS.  

 

6.1. LINEAR NEURAL NETWORK MODEL FOR VISCOELASTIC MEDIA. 

 In order to describe a viscoelastic behavior of media under study (prototype of reinforced rubber 

composite) it was used the system approach based on the neural network model and procedure of its installation 

as dynamic system. 

 The structure of coming neural network is assigned of mathematical problem which based on initial 

information from one side, and seeking solution from another. The common algorithm of neural network is 

formulated from mathematical setting as it follows: 

1. Option of initial configuration of network, for instance, as a monolayer keeping an amount neurons equal 

the half of total amount of input and output. 

2. Model and training of network with evaluation of given mistakes and utilization of complementary 

neurons and intermediate layers (rule of hierarchy-adaptive models). 

3. Elicitation of effect of re-training and correction of network configuration (regularization of algorithm of 

training). 

In detail above schema looks as it follows: 

• Designation of figuration of input signal;  

• Designation of variety of actual output signal at n moment of time; 

• Designation of wishful output signal at n moment of time; 

• Designation of mistake of solution at n moment of time (as residual between real and wishful output signal); 

• Formulation of function of activation. As the activation function one can state a non-linear function the 

minimum of which is much less of minimal value of input signal, but maximum is much more than maximal 

value of this signal; 

• Description of structure of neural network;  

• Formation of functional of optimization (it is formed from conditions of problem). The most frequently it is 

used: the functional of minimization of mean-quadratic mistake; the functional of minimization of modulus; 

the functional of minimization of entropy; the functional of minimization of exponential mistake; 

• Option of method for scan of extreme of the functional of optimization. (The most simple and common 

method is gradient.); 

• Option of initial values of weights. (The initial values of weights are usually chosen from the conditions of 

problem and sort of activation function, by which the activation value for each neural hit into the area of 

nonlinearity for function of activation, but not into the area of its saturation.) 

At the given stage of work it was realized the first stage of synthesis of neural network for given 

viscoelastic media, namely, matrix of rubber composite (polybutadiene). 

 The linear integral model Maxwell’s type was chosen as training schema for input and wishful output 

signals by creation of viscoelastic model of media. Above model has been identified at the previous stages of 

work and some experimental data of the authors have been used. These data were made during the rheological 
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experiments at the RheoStress-150 (HAAKE, Co.) and look as dependencies of dynamical characteristics, that 

is, storage G’ and loss G” moduli on experimental frequencies ω . 

 In fig.6.1 the graphs of functions ( )ω'G  and ( )ω"G  are exhibited. 

 

Figure 6.1: Dynamic moduli of storage ( )ω'G  and loss ( )ω"G . Polybutadiene. Т=40оС. Amplitude of 

deformation %005.0=γ . 

 

 Let us take the non-linear model of viscoelastic behavior of given material as integral model with 

Fredholm’s operator of the first kind 

             (6.1) ( ) ( ) ( )∫
∞−

−=
t

dtGt ττγτσ

Here ( )τγ  is the gradient of deformation rate, ( )τσ  is the stress, ( )sG  is the relaxation modulus. Identification 

of model (6.1) for description of behavior of above media has been taken at the previous stages of work. 

 In the fig.6.2 is shown the outlook of input signal as rectangular impulse with amplitude 005.0=γ , the 

reaction of which we would like to identify. 

 
Figure 6.2: The input training signal. 

 

 As the wishful output signal let us take function ( )tσ , which is exhibited in fig.6.3. 
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Figure 6.3: Dependence ( )tσ  calculated according to expression (1). 

 

 Conventionally takes the model (6.1) as real object and neural network of this object must be construct 

and ground. The initial information for synthesis of network consist in a limited multiplicity of the input and 

output signals, that is, consists of a priory uncertainty (ill-posed by Hadamard the algorithms of adaptation and 

training). 

 

6.1.1. Adaptation and training of neural network. 

 

Let us to consider some general conditions, which we can meet during the procedure of synthesis of 

neural network. 

Designation number of layers of network and number of neurons of layer is very important problem. 

After that it is necessary to fix the values of weights and displacements, which minimize the mistake of solution. 

It is attained by means of procedure of training of network. By analysis input and output signals, weight and 

displacements of the networks are installed automatically such a way, that it will be possibly to minimize the 

discrepancy between wishful signal and output signal. This discrepancy is a mistake of training. Thus, 

procedure of training we can characterize as process of matching of parameters for the model or phenomena, 

which is realized by neural network. The mistake of training for given configuration of neural network is 

calculated by comparison all output values with wishful values. Above discrepancy let us to form so-called 

function of mistakes, that is, criterion of quality of training. Usually this function is taken a sum of quadrates of 

mistakes. 

Algorithm of training of neural network is similar to algorithm of scan of global extreme of the multi 

variables function. During the training of network a function of mistakes has to come down. 

 

6.1.2. Construction of linear stationary neural network. 

Let us to consider further a procedure of adaptation and training of neural network, which must be used 

for solution of linear operation. 
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If a real system is linear or closed to linear, that linear neural network can model this system with very 

small error. Let as further to discuss a problem of synthesis of neural network for stationary model and for non-

stationary model. 

We will consider a real object (polybutadiene at 40oC) which is deformed in linear area of deformation 

(small deformation 0.005γ = ). Gradient of given deformations and appropriate response as relaxation of 

stresses show in figs.6.4 and 6.5. 

 

Figure 6.4: Gradient of given deformation. Polybutadiene. T=40oC. 

 

 

Figure 6.5: Relaxation function. Polybutadiene. T=40oC. 0.005γ = . 

 

It is required to train a linear neural network so that, it could be describe stress-strain condition of 

polybutadiene at small deformation. Herewith, what ever additional information besides input and output signal 
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as strains and stresses could not be allowed. A problem consist in selection of order of network by means of 

summation the elements of retardation. 

In order to construct above neural network firstly the model of 3-d order has trained and qualified the 

errors of those process. Because the errors of such kind model were bigger than it is allowed, an automatically 

increasing of complexity by means of extension the elements of retardation and appropriate synaptic 

connections was happened. After that a bunch of models from 6-th up to 20-th order has been made and tasted. 

Hierarchy of modes has stopped automatically after approaching to minimal error of training. Herewith the 

order of models has been limited by 24 numbers of elements of retardation. Note, that further enforced 

increasing the grade of model above 24-th elements leaded to ill-posed model. The last one is equal to ill-posed 

by Hadamard’s integral model. 

In figure 6 exhibits output signal of of 24-th order network and experimental data for real object 

(polybutadiene) which has been identified by above network in case of identity of input signals. As it can see 

from figure 6 the output signals coincide. 
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Figure: 6.6. Matching of output (o) and wishful (x) signals for 24-th order neural network. 
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Figure: 6.7. Errors of training for 24-th order neural network. 

 

In fig.6.7 exhibits the graph of errors of training. Thus, to describe a behavior of viscoelastic media at small 

(linear) deformations one can used the neural network model of 24-th order complexity. The model proposed 

consists of only one layer of neurons with linear functions of activation and with appropriate number the 

elements of retardation. It was shown, that above model successfully manages with problem of identification of 

linear stress–strain conditions such sort of viscoelastic object as polybutadiene. Herewith, there are not required 

any a priory information about materials functions, relaxation moduli, relaxation spectrums, dynamical moduli, 

differential or integral equations. 

 

6.2. LINEAR NON-STATIONARY CLASSICAL MODEL. 

At previous stages of work, using some experimental data it was stated, that at finite (non-linear) 

deformations a viscoelastic medium could not described by means of linear integral model which has been 

proposed for small (linear) deformations. Developing above approach for finite deformations the non-linear 

model, based on the integral operator Hammerstein’s type, has been offered by the authors, and an appropriate 

algorithm of its identification on the basis of Tikhonov’s smooth functional has also been synthesized. Statistical 

algorithm of identification, which figure a method of regularization for Hammerstein’s operator on the base of 

criteria Byes, we have also constructed. Taking into account a complexity evaluation of function of non-

linearity in Hammerstein’s operator according to data of traditional real experiments the bit-linear 

approximation to construct a non-linear model has been proposed. Above model let us to identify the model of 

viscoelastic behavior up to large values of deformations leaded to alteration of relaxation characteristics by form 

and by location axis of relaxation times. 

It is important, that in above mentioned case it was considered a problem when relaxation modulus of 

viscoelastic medium depended on tensor gradient deformation only and did not depend on temperature. But, a 
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synthesis of model of viscoelastic medium, when the relaxation modulus is a function of temperature is also 

important. In both cases it is stated, that relaxation modulus of medium is calculated from relaxation spectrum. 

Earlier, we accepted, that non-linear behavior of medium from phenomenological point of view is 

considered by elements of Maxwell. The last elements have to include the non-linear elastic components. A 

relaxation spectrum has formed by non-linear tensor function on elastic coefficients of Maxwell’s elements, but 

components of viscosity have been stable. Below we also consider a happening of small deformation, when 

relaxation spectrum does not depend on tensor of gradient of deformation, but an alteration of temperature 

changes both the shape and the location about axis of relaxation times of spectrum (because of alteration the 

coefficients of viscosity in Maxwell’s elements). Such case we conditionally will be call as linear non-stationary 

on time. 

Let us shortly to analyze a behavior of linear non-stationary classical model. 

We accept, that dynamic moduli of storage ( ), kG' Tω  and losses ( ), kG" Tω  by  have been 

evaluated by constant temperature T

1,...,k = N

k and frequencies ω  (Ferry J.D., 1980). Using the experimental data, it is 

easy to evaluate the relaxation spectra h, using the solution for ill-posed by Hadamard equations (6.2) and 

procedure of regularization (Yanovsky Yu.G., Basistov Yu.A. and Siginer D.A., 1996).  
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( ) ( ) ( ) ( ) ( ), , 1 , ,k k kh s T h' s T h" s Tμ μ μ= + − ∈ 0,1      (6.3) 

Coefficient μ depends an vicinity of experimental and calculated moduli, s is the relaxation time. Using (6.3) it 

is easy to calculate the complex of relaxation moduli  

1
0

( , ) ( , ) exp d(ln ), [ , )k k k k k k kG t T h s T s t u u by T T
∞

+
⎧ ⎫= − ∈⎨ ⎬
⎩ ⎭∫ kt

s
=

]
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Non-stationary relaxation modulus one can qualify as 

( ) ( ) [ 1
1

, , ,
N

k k N
k

G t G t T t u u
=

= ∈∑        (6.5) 

Above non-stationary relaxation modulus begets non-stationary linear classical model in according to equation 

( ) ( ) ( )
( ) ( )

, /
, d

3 1

t s s
x t G t s s

I II
α

α β β

−

−∞

= −
− + + −∫

1
tDC x D

τ       (6.6) 

where  is the tensor of Cauchy-Green and matrix 

of Yakobi. 

, , 0, 0 1,t tI tr II tr α β−= = > ≤ ≤ =1
tC C C F F =T T

t t tC

Let us further to debate reaction of non-stationary model (6.6) on consistency of input impulses (gradient 

of deformations) as dependence, which represents in fig.6.8. 
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Figure 6.8: Consistency of impulses the gradient of deformations. 

 

Reaction of non-stationary model (6.6) exhibits as a sequence of graphs the relaxation of stresses, 

herewith each relaxation curve characterizes the same object at different temperature. This reaction shows in 

fig.6.9. 
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Figure 6.9: Relaxation function of linear non-stationary model. 

 

From fig.6.9 one can see in order to realize the linear non-stationary model it is necessary to get some 

additional information about interval of temperature, where consistency of stationary models approximates non-

stationary model. In a certain sense it is the bit-stationary approximation of non-stationary model. An absence or 

a limitation additionally information leads to uncertainty, which influence on accuracy of solution of equation 

(6.2). 

Above drawback of integral models with kernel, which based on relaxation spectrum, enforce us to 

reqruit some new models for control of dynamic processes, in particular, neural networks because of the high-

operation and fitness to parallel calculations of those. Such sort of models able solve the problems of control to 

dynamic objects without algorithmization of process. They can be used for procedure of training and adaptation 

of model. 

 

6.3. LINEAR NON-STATIONARY NEURAL NETWORK MODEL. 
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Above we already discussed stationary non-linear neural network model of viscoelastic media. Let us to 

consider further a problem of synthesis of neural network model for linear non-stationary object, when the 

object can change its characteristics during the time. To synthesis a neural network let us to accept, that real 

object contents next recurrent expressions 

( ) ( ) ( )
( ) ( ) ( ) .1200n801,nr1ny6.0ny9.0

,800n0,nr1ny5.0ny
≤≤+−=

≤≤+−=
      (6.7) 

Let us to accept, that input signal of that object is equal ( ) ( )( )sin 8sin 4r t t t=  with time of quantum 

0.005 second on the length [0,6] seconds. Graph of this signal shows in fig.6.10. 

 

 

Figure 6.10: Training input signal. 

 

Output signal of non-stationary model (6.6) exhibit in fig.6.11. 

 

 

Figure 6.11: Output signal of non-stationary model (6.7). 

 

Output signal of neural network one can see in fig.6.12. 
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Figure 6.12: Output signal of neural network. 

 

From comparison figs.6.11 and 6.12 it is evidently that graphs of signals coincide. It indicates, that 

network has successfully installed on wishful non-stationary signal from outlet of model (6.7). 

A structural schema, which has been synthesized for above problem exhibit in fig.6.13. 

 

 

Figure 6.13: Structural schema synthesized neural network. 

 

Weight and displacement after adaptation of network takes values IW{1,1}=[0.4926, 2.3787], b{1}=[-

0.3100]. 

From fig.6.13 it follows the network does not content a consistence of stationary models for non-

stationary signal and, unlike (6.7), deputizes unique display «input-output», which has been realized by 

expression 

( ) ( ) ( ) 3100.01nr3787.2nr4926.0na −−+= . 

Below, in fig.6.14, we exhibit the function of mistakes as residual values of output and wishful signal for each 

time. 
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Figure 6.14: Function the mistakes of training of neural network. 

 

From fig.6.14 it follows, that neural network more precisely reproduces the first stationary model (6.7), 

working at time interval [0,4] seconds. The second stationary model (6.7), working in diapason [4,6] seconds is 

much worse reproduced by network. On the whole, workability of linear non-stationary network model one can 

state as satisfactory. 

 

6.4. USING THE NON-STATIONARY NEURAL NETWORK MODEL FOR DESCRIPTION OF 

BEHAVIOR OF VISCOELASTIC MEDIUM. 

As a training material for neural network model let us take the figs.6.8 and 6.9, which have been 

calculated by classical linear non-stationary model according to data made by Rheometre Rheostress 150 

(HAAKE) as dynamic storage G’(ω) and losses G”(ω) moduli. 

In fig.6.15 let us to show the structural schemes of synthesized network analysis of which will be made 

below: 

 
Figure 6.15a: General structural schema of network. 
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Figure 6.15b: Structural schema of neural layer and neural network. 

 
Figure 6.15с: Structural schema of weight summation with one element of retardation. 

 

After training an output signal has been synthesized by network (fig.6.15) (see fig6.16 (x)). Therein 

displays also a dependence (o), made on the base of non-stationary model. 
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Figure 6.16: Wishful (о) and extradited (х) signals of neural network, which stores one element of retardation. 

 

From matching signals it is easy to see a retardation around time signals from outcome of network with 

respect of wishful signal, that stipulates the big enough mistake of training in equable metrics (see fig.6.17).  
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Figure 6.17: Function of mistake of training in equable metrics for network with one element of retardation. 

 

In fig.6.18 represents the structural scheme of retardation with 12-th elements, but in fig.6.19 represents 

the function of mistake. 

 
Figure 6.18: Block of weight summation of network with 12-th elements of retardation. 

 

 231



 

Figure 6.19: Function of mistakes the network with 12-th elements of retardation in equable metrics. 

 

It is easy to see from figs.6.17 and 6.19, that function the mistakes of training of network does not 

change. Accordingly output signal of network did not change. 
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Figure 6.20: Wishful (о) and extradited (х) signals of neural network with 12-th elements of retardation. 

 

From matching graphs in figs.6.16 and 6.20 it follows, that increasing of number of elements of 

retardation in structure of neural network does not influence on accuracy of its operation. One can mark, that in 

above test problem, exhibited for modeling of two stationary filters, such retardation in signals did not observe. 

One can propose, that it is necessary to increase a dimensions of vectors in experimental data. Because the 

ability of experimental equipment is limited, we made a solution to increase a number of points of observation 

in experiments by means of interpolation of data. It was made the increasing dimensions of vectors of data up to 

800. Above expanded data one can see in figs.6.21 and 6.22. 
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Figure 6.21: Expanded interpolated input signal (gradient of deformation). 
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Figure 6.22: Expanded interpolated wishful signal (stresses). 

 

Output signal of neural network for expanded by dint of interpolation experimental data represent in 

fig.6.23. 

 

 

Figure 6.23: Output signal of neural network model with one element of retardation by expanded dimensions of 

vectors of data. 

 

From fig.6.23 one can see, that retardation of output signal, we observed earlier, with respect to wishful 

signal has disappeared. The network is fairly well reproduces non-stationary model even by one element of time 

retardation. Function of errors above network exhibits in fig.6.24. 
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Figure 6.24: Function of errors of network with expanded experimental data. 

 

From matching of figs.6.24 and 6.19 one can conclude, that errors in fig.6.24 practically one order less. 

 

6.5. CONCLUSIONS. 

 

1. Classical non-stationary model of behavior of viscoelastic media is constructed on the base of integral or 

differential equations, depending on parameters non-stationary (for example such parameter as temperature). 

Non-stationary model step by step switches available stationary model, in dependence on appropriate 

intervals of values of parameters of non-stationary.  

2. Neural non-stationary network model does not require an entering of additional parameter of non-stationary 

and, therefore continuously reproduce a wishful non-stationary signal. The model does not synthesized as a 

set of stationary models, which depend on parameter of non-stationary, and it is the main advantage of the 

model. 

3. Neural network model is simple enough both in the constructive and in the algorithmically performance in 

compare with classical case. It has the bigger mobility and let us to use the parallel calculations. 

4. Synthesis and analysis of neural work model to describe the behavior of viscoelastic media shows, that to 

accomplishment of required accuracy of work for neural network without using the feedback (small mistake 

of training), it is necessary an interpolation of experimental data in order to expand a dimension of vectors. 
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7. PERSPECTIVE OF THE FURTHER RESEARCHES WITH USE OF THE RESULTS 
RECEIVED IN WORK UNDER PROJECT. OFFERS OF VARIANTS OF THE FURTHER 
RESEARCHES  
 

In this section the further directions of researches are briefly formulated. These researches can be 
received on the basis of the perspective preliminary theoretical workings received within the framework of 
the project. Certainly, these theoretical workings did not showed all in reports under the project as their 
subjects is beyond problems formulated in the Work Plan of project.  

The following directions of researches are offered to our colleagues from the USA as the formulation 
of concrete themes of researches at the further colaboration. After a choice of concrete directions of the 
further researches the detailed description of corresponding stages of researches and the plan of works can be 
formulatedd.  

As a result it is possible to formulate and briefly describe the following directions of probable 
researches which realization is guaranteed by both theoretical reserve and available base for experimental 
researches. 
 
7.1. STUDYING  OF THE MECHANICAL PROPERTIES OF NANOCOMPOSITES 

It is suggested to continue the study of the mechanical properties of nanocomposite in the following 
directions: 
1. To continue studying the influence of the intermediate phase to the effective properties of the composite. 

Such a phase may appear during polymerization process in the form of thin or thick shells surrounding 
nano-particles. The study was commenced during the project and a method of estimation the influence of 
the intermediate phase properties was suggested, based on consequent consideration of contribution of 
the inclusions and intermediate phase into the effective properties. It is suggested to develop this 
approach to account for anisotropy effects and various types of space distribution.  

2. To study the influence of the area of contact between the matrix and inclusions. Researches on this and 
previous point may help to understand such processes as intercolation  and exfoliation and their 
influences to the effective mechanical properties of the composite. 

3. To study the influence of the matrix anisotropy and to obtain a solution for effective elastic properties of 
composite with anisotropic matrix (at least for some important particular cases of anisotropy). For the last 
years, a lot of attention has been devoted to the problem of influence of inclusions of various shapes to 
the effective properties of composites with isotropic matrices. At the same time much less attention has 
been given to consideration the anisotropic matrices. This is mainly due to the fact that the latter case 
need much more complicated calculations involved, such that the general analytical solution for this case 
in the closed form is still unknown. Meanwhile, to obtain such a such a solution, at least for some 
important particular cases of matrix anisotropy, would be of great interest due to: 

- such a solution is of importance itself; 
- for calculating effective elastic properties of composite even on the base of isotropic matrix 

such methods as self consistent method and differential self consistent method involve 
solutions for an inclusion in the anisotropic matrix.   

4. In the applied relation researches connected with development of numerical - analytical design 
procedures of effective nanocomposites characteristics are perspective on the basis of method Eshelby 
(1957,1961) and exact  Eshelby type solution, Mura (1982), Kovalenko and Salganik (1977) method with 
account of scale effects - local interactions of adhesion-cohesion type. These techniques allow 
generalizing effective design procedures in case of nanocomposites, taking into account adhesive 
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interactions and local interactions of cohesion type correctly. Use of well fulfilled differential scheme to 
such modified method will allow using it for enough big concentration of the inclusions up to 20-30 %. 
Here it is foreseen two stages. The first is connected with receiving of generalized Eshelby matrix not 
only for a case of local effects of cohesion type (this solution is submitted in reports under the project), 
but also on more general case which is taking into account a full spectrum of adhesion-cohesion local 
effects. This, fundamental problem by present time is actually solved. The second stage is connected with 
solution of the identification problem of three model parameters which being in charge of cohesive and 
adhesive interactions on the basis of the solution received with the help of generalized matrix Eshelby 
(the analytical solution) and with use of optimum control methods (a method of the conjugate gradients, 
automatic differentiation, etc.). Use of special numerical quadratures for effective calculation a 
component of Eshelby matrix in spatial statement for inclusions of special forms can be  supposed.  

5. The next direction is connected to studying thermodynamic properties (heat conductivity, thermal 
capacities, coefficient of temperature expansion, damping factor and so forth) of the damaged mediums 
on the basis of four-dimensional model [ Belov P.A, Lurie S.A. About Model of the Heat Transfer in the 
Dynamically Deformable Mediums // Mechanics of composite materials and structures. ,2000, т.6, N 3, c. 
436-444;     Lurie S.A, Belov P.A, Kalamkarov  A. New Fenomena of the Heat and Mass Transfer for 
Dynamically Deformable Mediums // Book of Abstract of  Annual Meeting GAMM 2001, ETH Zurich, 
2001, February 12-15, p.84;   Lurie S., Belov P. Variation Model of Nonholonomic Mediums // 
Mechanics of composite materials and structures. ,2001, т.6, N 3, p. 436-444. ]. The studying of diffusion 
processes on the basis of analogy to thermodynamic processes (heat conductivity) is supposed. Bases of 
such research are medium models with scale effects and their generalization on nonconservative 
mediums. 

 
7.2. ADHESION INTERACTIONS 
1. The following directions of activity seem to be most important within the framework of the model of 

polymer-nanotube adhesion and the extension of this project: 
1) taking into account the compliance and strain of the polymer matrix; 
2) analysis of an influence of the molecular structure of the jointed materials on the thickness of the 

interface layer; 
3) consideration of the nanofibers with a scrimp and the nanofibers bundles; 
4) analysis of nanofibers compression taking into attention the nanfiber buckling; 
5) analysis of an influence of the interactions between the nanofibers, nanoparticles and the 

interface layer in the polymer matrix on the mechanical properties of nanocomposites; 
6) analysis of an influence of the adhesion between matrix and nanofiller on the fracture toughness 

of nanocomposites. 
7) development of techniques of an estimation of adhesive properties using the correct solution of 

problems of identification of adhesive parameters on the base of experimental tests fro 
macromechanical characteristics of a composite, and by realization of direct tests of adhesive 
properties of materials (measurement of corners of a meniscus, use of effect capillarity and 
definition of the friction factors) 

8)  The further studying of superficial properties is possible in the following directions: 
1. Development of the nonlinear theory of adhesion for studying conglutination mechanisms, 

agglutination and so forth also managements of them. Adhesion as processes of buckling failure 
(consequence - adhesive strength) 
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2. ` Research of the physical phenomena (for example absorption, filtrations and so forth) which can be 
  modeled as special effects of the constructed medium model with conserved dislocations. Management of 

superficial properties. Designing of filters, chemical reactors, cleaning devices and so forth.  
  Development of porous medium models, designing of porous elements (porous membranes and so forth).   
 
7.3. MODELLING OF THE DAMAGE ACCUMULATION  AND OTHER APPENDICES
1. Correct procedure of account  of the damage accumulation  based on the general model of mediums with 

conserved defects (the Annual report 2005) represents also practical interest. We offer the direction of 
researches where the new correct way of the account of dislocation damage as on mechanical 
characteristics of a material as a whole also on its durability in real conditions will be fulfilled.  
This procedure is based on strong asymptotic approach and takes into account local scale effects peculiar 
to development of failure in the material.  
Developed asymptotic procedure provides constructions of the basic asymptotic process and local 
processes in parallel.  
-The basic asymptotic process allows to receive estimations for integrated characteristics of effective 
modules of elasticity, to take into account an accumulated damage in a material due to concentration of 
various type dislocations (in the Final report it is specified all possible types of dislocations, is given their 
classification) in a vicinity of generalized heterogeneities (top of crack, contact zones of different phases 
and so forth). For this purpose within the framework of any numerical algorithm of the solution of a 
direct problem of the theory of elasticity the iterative scheme of loadings recalculation with the account 
of failure can be used. (see the final report) 
-Local asymptotic processes will allow establishing parameters of failure and character of damage 
distribution (damage redistributions). Besides, local asymptotic processes will allow estimating the 
damage influence on local distribution of stresses, for example, in contact zones in the phases. It is 
especially important for damage strength estimation of composite materials with nanoinclusions. As the 
special case the failure determined by special type of dislocations - porosity is modeled. 

Let's note, that preliminary researches at modeling of zone of plasticity (as damage zones), in 
vicinities of the top of  cracks and its evolution depending on load conditions, variability of a field of the 
stresses caused by concentrators of stresses, showed the good results.   
Thus, it’s offered the direction of researches where the new correct way of the dislocation damage 
account as on rigid characteristics of a material as a whole, also on its strength in real conditions will be 
fulfilled.  

2.   Generalization on a dynamic case of the theory of defects is one of the important directions of the further 
researches. Creation of a theoretical basis is of interest for studying of nonclassical properties of the 
damaged medium and nanocomposites using the resonant methods. For this purpose it is necessary to 
formulate a variant of geometrical theory of defects for four-dimensional space when time is equal in 
rights coordinate, instead of model parameter.  This direction already develops; some results are stated in 
works:  

1. Lurie S., Belov P. About Model of the Heat Transfer in the Dynamically Deformable Mediums // 
Mechanics of composite materials and structures. ,2000, т.6, N 3, c. 436-444;     

2. Lurie S.A, Belov P.A, Kalamkarov  A. New Fenomena of the Heat and Mass Transfer for Dynamically 
Deformable Mediums // Book of Abstract of  Annual Meeting GAMM 2001, ETH Zurich, 2001, 
February 12-15, p.84;    

3. Lurie S., Belov P. Variation Model of Nonholonomic Mediums // Mechanics of composite materials and 
structures. ,2001, т.6, N 3, p. 436-444. 
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3. Studying of defects dynamics in continua in view of limited speed of interactions distribution ofvarious 
types also is represented and being rather perspective. The created theoretical base, numerical - analytical 
methods of the solution and scientific workings will allow to study here <relativistic> effects in defective 
mediums.  The interesting practical results can be received from studying of abnormal effects in 
heterogeneous materials with nanostructures, connected with limited speeds such as shock waves, 
Reley’s waves and so forth and also their interaction with structure of a material. Significant interest 
represents the studying of essentially located packages of sound waves (phonons) and their interaction 
with nanostructures. This research is connected to use of resonant methods, with development of new 
methods of nondestructive check when by results of interaction generated phonons with structural 
parameters it is possible to study properties of materials. 

4. Within the framework of the same approach on the basis of multiparametric models of the 
defectness mediums it is offered to develop a technique of the specified estimation and design of the 
dissipative characteristics of viscoelastic materials. For this purpose, first of all it is necessary to receive 
within the framework of a kinematic variational principle the generalized equations of Navier-Stoks type 
(generalization of the equilibrium equations on a viscoelastic case) and corresponding generalizations of 
the moment equilibrium equations, of which analogues does not exist for the viscoelastic medium.  

5. Research of  the medium(materials and structure)  behaviour under loading of the physical fields with 
high changeability on the coordinates within the framework of models of the high order (taking into 
account scale effects) is more correct than in view of the classical theory. Additional terms, according to 
more full description of external influences, enter both into the equations of balance, and in boundary 
conditions. These terms contain components of gradients of higher order in comparison with classical 
model. Thus, using of the classical models for the description is high-gradient  actions  results to 
"smoothing" of such actions and, in result, in loss of the essential effects connected to the big 
changeability of acting physical fields. So, for example, at research temperature loading with the high 
changeability it is shown, that the model of the mediums, which is taking into account scale effects, 
contains in the equation of balance derivatives up to the third order from a field of temperatures, and in 
boundary conditions up to the second order. In result, it is shown, that in case of temperature fields with 
low amplitudes, but high gradients the new effects bringing significant amendments in distribution of 
syresses take place. Value of the stresses can differ more than on the order in comparison with the values 
received on classical model.  
The explanation of the effect  of superficial cracking for the ceramics under surface coatings is given in 
case rigidity of a covering exceeds rigidity of ceramics. So, development of researches connected with 
studying of the materials and structures  under loading of the physical fields with high changeability , will 
allow to receive methods of calculation and designing for the nanocomposites, thin films, protective 
coatings and so forth, These researches  will allow to give techniques of the account of high gradients of 
external actions on the fields of stresses, to offer the recommendation to technological processes.  

6. The algorithm of a block method of multifields can be applied to more complex models of an interphase 
layer, which include not only cohesion and adhesion effects, but also the associated problems including 
thermal and electromagnetic processes. On the basis of generalized formula Neiber-Papcovich numerical 
modelling of processes in composite materials can be considered in view of acoustic interactions.  
Specific finite elements can be constructed on the basis of algorithm of a block method of multifields 
with the purpose of their application in a traditional method of finite elements. 
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7.4. MOLECULAR MODELING 
The next evolution of the work is proposed in two main directions: scientific – fundamental branch and 
engineering branch. 
1. In fundamental direction:  
a. It will be develop the methods and algorithms of molecular modeling (quantum mechanics (QM), 

molecular dynamic (MD) and Monte-Carlo (MK)) to calculations complex heterogeneous systems 
consisted of polymeric macromolecules and combination of active fillers for amount of particles under 
computational calculations above 106 (nano- and mezo- levels); 

b. It will be expand the three-dimensional object-oriented approach of finite elements method with 
automatic generation of network to modeling of stress-strain conditions for representative elements of 
structure of heterogeneous media (perspective composites), consisted of polymeric matrix, combination 
of active fillers and supplements and interphase layers (micro- level); 

c. It will be elaborate the new methods of identifications, that is, theoretical description of non-linear 
viscoelastic behavior of heterogeneous media, consisted of polymers and active ingredients for control 
the rheological behavior under processing, in particular, on the basis of neural network approach; 

d. An experimental verification of above fundamental results (see a-c) will be made on the basis of 
contemporary scientific equipment; particularly, atomic-force and tunnel scanning microscopy optical 
three-dimensional interferometric microscopy, set of rheological tools, stress-strain apparatus, etc. 

2. In engineering direction it is important: 
a. Studying of dependence of structure, energetic, mechanical properties of nanocomposites consisting of 

polymer and ultradisperse filler, on the chemical nature and structure, modification of a surface, the size, 
quantity of interacting particles of filler and polymer. Studying the influence of water on the state of the 
interface of a complex composite. Studying of ways of formation of composites with in advance set 
properties. Studying of ways of filler introduction into a polymeric matrix for reproduction of demanded 
properties of composites. Computer selection of nanocomposite components. 

b. Construction of corresponding molecular models of nanocomposite components and their adsorption 
complexes, quantum mechanical minimization of space structure of these complexes, calculations of 
microscopic deformation characteristics in microscopic coordinate of deformation and microscopic 
coordinate of friction approximations. Calculation of microscopic Young’s moduli, stress-strain curves, 
microscopic coefficients of adhesion. 

c. A polymeric matrix: rubbers, resins, thermoplastics. Fillers: amorphous technical carbon, carbon particles 
with a defective surface, various carbon particles with modified surface, fullerenes, carbon tubes, white 
soot (ultradisperse silicate) and its modified hydrophobic forms, natural clay, in particular, 
monmorillonite and any combinations two or several fillers. 

d. Connection with MD and MK modeling. Construction and optimization in QM approach of initial models 
for use in MD and МК. Calculation of enthalpic component of interaction energy of particles with the 
subsequent calculation of entropic component in MD or МК. Calculation of special force fields for 
fragments of nanocomposite components for introduction of QM-corrected parameters into MD and МК 
calculation. QM/MM the approach in which the part of system (up to several hundreds atoms i.e. at about 
area of contact of particles) is modeled more strictly in QM the approach, and other part (up to several 
thousand atoms of an environment) in faster MM approach. The account of influence of solvent and 
environment on interaction and mechanical properties of nanocomposite components in explicit 
(molecular) and implicit (continuum) models. 
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GENERAL RESULTS 
The following results were obtained: 
1. On the base of the classical Eshelby’s approach the effective solutions for determining effective 

properties of the composites formed by the elastic matrix and isolated inclusions have been obtained 
in the closed form. The solutions have been presented both in tensor and matrix forms. 

2. A number of important particular cases, for which asymptotical representations are possible, have 
been pointed out: flat inclusions (nano-plates), and needle-like inclusions (nano-tubes). The 
combined influence of the shape and relative stiffness of inclusions has been investigated; it has been 
shown that the presence of two parameters (the ratio of maximal an minimal dimensions of the 
inclusion and relative stiffness of inclusions) leads to non-uniform limit transition, which restricts the 
area of applicability of known classical asymptotical formulae. The areas of applicability of 
asymptotical formulae have been obtained (appears to be for the first time). 

3. The influence of anisotropy of the inclusions to the effective composite properties has been 
investigated (Final Report, 2003). It has been shown that the main influence is due to some particular 
combinations of elastic parameters of inclusions, and these combinations have been pointed out. 

4. The influence of the orientation of inclusions in space have been investigated both for isotropic and 
anisotropic inclusions. For the composites on the base of nano-tubes three types of space distribution 
have been considered: random, aligned and transverse (all inclusions lay in parallel planes). The 
solution for last case appears to be obtained for the first time. 

5. The nonlinear influence of concentration has been accounted for with the help of differential self-
consistent method and the method of effective field (Mori-Tanaka).  

6. The obtained results were compared with the results known from the literature. The obtained results 
appear to be important as it are, as well as an useful tool for constructing more advanced models such 
as three-phases models, accounting for the presence of an intermediate layer between the matrix and 
inclusions. 

7. An algorithm for approximate calculating the effective characteristics of three phase composite 
material formed by the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions 
of the third phase is suggested.  

8. For the three-phase composite the following problems have been formulated. First, knowing 
mechanical and geometrical properties of all phases to calculate the effective properties of the 
composite (the direct problem). Second, knowing elastic properties of the matrix and the composite, 
to estimate the properties of the Intermediate phase and/or the inclusions (inverse problem). 

9. Variants of solutions of both direct and inverse problems have been suggested. Examples of solving 
both direct and inverse problems have been presented. 

10. The algorithm for calculating the effective characteristics of three phase composite material formed 
by the matrix, nano-tubes (or disk-like nano-particles) and surrounding them regions of the third 
phase is developed. Variants of both direct and inverse problems are considered for both thick and 
thin intermediate layer. 

11. In the frame of the approach the effects caused by anisotropy are accounted. An example of solving 
inverse problem has been presented: estimation of the properties of intermediate layer.   

12. During the reported period we proposed a mechanical model of the interface adhesion of polymer 
matrix and nanotubes accounting for the dependencies of the shear stresses between matrix and 
nanotube versus the main physical-mechanical parameters of the nanocomposite material. 
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13. The parametric analysis of the influence of the model parameters on the nanotubes and the interface 
layer stresses states was performed.  The asymptotic cases of the stresses states for a small relative 
stiffness of the interface layer and a large relative size of the nanotube part were considered and 
analyzed.  The comparison with published experimental data was performed and demonstrated a 
good agreement. 

14. The proposed multi-parametric model can be used for the theoretical analysis of properties of new 
nanocomposite materials and for analysis of the experimental data. 

15. On the basis of the previous researches the consistent and correct theory of interphase layer is  
formulated. The model is supposed to be a basis for construction of more complex models for 
nanomechanics.   The description of the interphase layer theory and some main applications include 
the following moments: -the formal mathematical statement,-  the physical constitutive equations,  -
the identification problem of the parameters determining nonclassical effects, -the qualitative analysis 
of the theory-analytical estimations of properties of an interphase layer, -the qualitative analysis of 
the theory-estimation of an interphase layer influence on the effective characteristics of a composite, 
-some application for quantum mechanical approaches, -numerical modeling of the stress state of the 
cell with inclusions and some notes about specific averaging procedures for filled composites, - 
previously  results of the generalized Eshelby problem. 

16. The particular examples are considered: 
-The approximated analytical dependences of the properties of interphase layer in a composite near 
the border between an inclusion and matrix on the characteristics of cohesion and adhesion fields of 
phases are established  and approximate analytical estimations of Young’s and shear moduli of the 
interphase layer are given.  
-The model problem for nonsingular crack  in be-plane 2-D statement was investigated. The 
hypothesis of existence of local stress fields near a crack tip has received the formal substantiation. 
The new physical constant C   (cohesion field) was identified form the parameters of the fracture 
mechanics (critical crack disclosing , kδ , within the Barenblatt’s zone of length, , and specific 

superficial energy,
0r

γ ) is established.  
17. The solution of the meniscus problems is given, which is interesting for determining the role of the 

surface effects (adhesion) for the known effect of meniscus forming. This solution may be used for 
formulation of the experiment aiming at determining the adhesion parameter.  

18. Composite materials are considered taking into account the theory of interphase layer (local cohesion 
and adhesion effects). The account of these local effects allows to model effect of strengthening of 
the filled composite materials. 

19. Approximate analytical estimations of Young’s modulus of the composite materials taking into 
account the local cohesion and adhesion effects are established which show  the good agreement with 
the experimental dates for all diapason of the sizes if inclusions and volume fractures. 

20. An analytical representation is received for the constrained deformation of an inclusion of arbitrary 
shape in an infinite matrix. Eshelby matrix connecting deformations inside a cell and homogeneous 
deformations at infinity is obtained. Here, we received new fundamental result.  From Eshelby matrix 
for a considered class of problems of interphase layer the classical Eshelby matrix and additional 
component corresponding to influence of a cohesion surface layer on rigidity of a cell are picked out.  
The received formulas are base for effective technical of calculating  of  average properties a 
composite material within the framework of model of moment cohesion.  

 241



21. A variant of the consecutive concept of the quantum-mechanical description of materials was 
formulated. The suggested concept allows connecting macro- and micro-characteristics of materials 
with parameters of potentials used for modelling continuum environments as ensemble of the 
particles connected by special character of interactions. The different types of potentials are 
considered within the framework of the suggested research. Their analysis is given. 

22. There were developed several approaches for an estimation of the homogenized properties of 
heterogeneous media with complex microstructure, described by problems of spatial moment 
cohesion, allowing to receive effective characteristics of composite materials, and also to simulate a 
picture of strain-stress state in a micro cell with inclusion of the any form with account of action of 
local cohesion and adhesion fields of displacements.   On the basis of procedure of asymptotic 
homogenization of composite materials with a periodic microstructure it was received the formula for 
effective characteristics of composite materials with account of the local effects. This formula is 
based on the solution of spatial problems of moment cohesion in a periodic cell with special 
conditions of periodic jump for which the block method of multipoles has been developed.  

23. With the help of a block method of multipoles distribution of energy density and components of 
stress tensor in micro cell with inclusion is simulated at variation of cohesion field parameters and of 
inclusion orientation inside a cell that has significance for quality evaluation of influence of cohesion 
fields and for calculation of effective characteristics of materials with random distribution of 
inclusions. 

24. The algorithm of the solution of a problem of model parameters identification has been developed 
according to experimental researches for the general three-dimensional case. The series of the 
calculations has been made. These calculations have shown, that the offered algorithm of model 
parameters identification allows restoring cohesion parameters with high accuracy.  The following 
results was received for the identification problem of model parameters according to experimental 
researches:- The problem of model parameters identification using the data of experimental 
researches has been formulated. Setting of this variational problem allowing choosing from allowable 
set of model parameters such set, at which some criterion function accepts the minimal value;  -  
Among a set of criterion functions has been chosen what is the most suitable for a considered 
identification problem;  -The problem of one-dimensional “moment cohesion” model parameters 
identification has been  solved   with use of available experimental data. - The algorithm of the 
solution of mathematical model parameters identification problem has been developed in a case 
double-plane moment cohesion model. The expression was received, allowing receiving exact value 
of a variation of criterion functional, caused by a variation of parameter.       -The algorithm of the 
solution of a problem of model parameters identification has been developed according to 
experimental researches for the general three-dimensional case. -The series of the calculations has 
been made. These calculations have shown, that the offered algorithm of model parameters 
identification allows restoring cohesion parameters with high accuracy.   The problem of the model 
parameters identification on the base of the experimental data (Minoru Miva, 1978)is solved in the 
frame of the simplified model. It is shown, that micromechanical modeling gives the good description 
of a composite as a whole.  The effect of rigidity increase of a composite with reduction of diameter 
of particles is modeled. 

25. A new general kinematic theory of defects in continuous media the general mechanisms of existence 
of defects, their generation (or birth) and disappearance (or healing) were establish the general 
mechanisms of existence of defects, their generation (or birth) and disappearance (or healing). We 
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establish the general mechanisms of existence of defects, their generation (or birth) and 
disappearance (or healing).  The significance of the present work is, in particular, in discovering the 
interconnection between the developed kinematic models for the continuous media with defects and 
their role in the hierarchy of multi-scale modeling.  

26. The full and correct model of mediums with conserved dislocations is given the new classification of 
the dislocations is offered, which gives the additivity in decomposition of slow- changing part of 
strain energy density concerning with  three various types of dislocations takes place. 
It was prove the existence of  nonclassical, non-local component of the potential energy associated 
with defects – dislocations that  is very unexpected for gradient models, which is the model of 
mediums with system of the distributed dislocations. 

27. It was obtained the generalized model of mechanics of continua as a whole that is theoretical model 
in which a surface tension, static friction bodies with ideally smooth surface of contact, the meniscus, 
wettability and capillarity are modeled as special effects within the framework of unified continual 
description. For the first time strictly proved physical treatment of all generalized modules of 
elasticity both in volume of the researched mediums and on its surface is given. Ways of definition 
new physical constant are offered to the generalized model appropriate as damage accumulation of a 
material and also to local scale effects of the cohesion and adhesive type on the basis of a sequence of 
test tests.  Within the framework of the offered model the spectrum of scale effects in volume and on 
a surface is taken into account.  Apparently, the submitted generalized model of mechanics of 
continua is the first correct theoretical model, in which various special scale effects (cohesion 
interactions,  a surface tension and so forth) in volume and on a surface are modeled within the 
framework of unified continual description. 

28. The Klapeiron’s and Dupre’s  theorems were proved for the pseudocontinuum model with scale 
effects of the cohesion  and adhesion types. The Klapeiron’s allows to connect the potential energy 
and the work of the external forces in accurate solution for the appropriate boundary-value problem. 
«Dupre’s theorem» can help to define in the direct experimental way the energy of adhesive 
interaction of bodies on the basis of Young’s equation. 

29. The algorithm  of the damage accumulation estimation (development of porosity and so on), was 
proposed on the base strong generalized model of the mediums with reserved dislocation.  This 
algorithm  for the account of damage accumulation (development of porosity and so on), near the 
ends of cracks; damage of material in zones of concentrators of stresses; damage of zone of plasticity 
connected to development in the mechanics of destructions was proposed on the base strong 
generalized model of the mediums with reserved dislocation. The asymptotic  method of the reduced 
loadings was proposed, as theoretically proved way of the account of the damage accumulation  in 
the filled composites and anisotropic composite materials under various conditions of loading. 

30. Theory of reinforcement of rubber composites is elaborated on the basis of multiscale hierarchical 
model and approach, which consider rubber composite as heterogeneous multicomponent medium, 
description the properties of which is necessary make taking into account the physico-chemical and 
micromechanical peculiarities of its components and using the different structural scales of 
detalization: from nano-, mezo- up to micro- and macro.  

31. For nano- and mezo-description of structural and mechanical properties of above composites the 
unorthodox algorithms have been developed by the authors. On the base of above algorithms in 
parallel regimes of calculations by supercomputer some computational experiments (methods of 
Monte-Carlo, molecular dynamics, quantum mechanics) have been made. Representative volumes of 
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medium under consideration have kept up to 106 atoms and molecules, that corresponds to 
microclusters of real composite’s structures. 

32. By dint of above methods the general peculiarities of formation the microstructure of polymeric 
composites, consisted of different polymeric matrixes (the thermoplastics, the elastomers, the 
thermoreactoplastics) and the active fillers (black and white soot, fullerens, nanotubes, 
montmorillonite), terminated by different chemical groups have been elaborated. Separately it was 
investigated an influence of molecular water inside a microcluster on the micromechanical behavior 
of above media. 

33. It was stated, that the results of molecular modeling signify as a base for creation of optimal 
structural formula of the expected perspective composites. A variation of component’s content, 
physical and chemical properties of the ingredients let us a consciously aim the requisite 
micromechanical properties of mesoscopic microclusters, that is, the representative elements of 
composite’s structure. 

34. A correctness of atomic-molecular computational model under study is verified by means of nano- 
and microstructure experiments. The methods of dynamic force and tunnel-scanning microscopy and 
optical interference microscopy have been used. Some important geometrical parameters and sizes of 
nano- and mezoscopic formations for aggregates and agglomerates of particles of fillers, length of 
interphase layers, parameters of polymeric matrix and other concomitant structures, which are formed 
inside a heterogeneous composite’s media during the preparation of row rubber compounds, have 
been elaborated. 

35. To describe a macromechanical (rheological) properties of heterogeneous medium in viscoelastic 
state (available for processing into articles) some constitutive rheological equations have been 
proposed. In order to construct above constitutive equations the unorthodox integral models of 
viscoelastic media have been used and a method of theoretical and experimental identification the 
civility of those have also been developed. In particular, it was shown the availability of neural 
network models for identification of viscoelastic and relaxation properties of composite’s polymer 
media. 

36. Viscoelastic properties of model elastomeric compounds on the base of natural rubber filled with 
different sorts of disperse particles (black and white soot, montmorillonite) have been tested in wide 
range of regimes and parameters of deformations and temperatures by rheological equipment. The 
most important relaxation parameters of viscoelastic heterogeneous medium, which governs a 
macrorheological behavior of above medium by deformation (processing) have been calculated and 
systematized. 

37. To estimate the efficient (average) macrocharacteristics of strength properties of heterogeneous 
media (rubber composites, particularly) a new method have been proposed. Above stage of work 
logically finalizes the multiscale hierarchical description of behavior of reinforcement rubber 
composite at the macromechanical level. The evaluation of effective mechanical and strength 
properties of composites appoints the operational merits of those. 

38. Further evolution and elaboration of the theory of reinforcement must be taken on the base of 
construction of data-set for optimal structures and the components of composite, taking into account 
the physical and chemical properties of surfaces and potentials of interactions in order to prognosis 
the reinforcement effect either concrete properties of material. It is important to attend to the using of 
nanoparticles as reinforcement filler and technology the distribution of those inside the matrix. 
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Milestones Completed 
 

Current technical status         - on schedule 
 
Cooperation with foreign collaborators 
We discussed with the Partner the current questions under the project, some corrections of the  Work 
plan from the point of view of the account of concrete parameters at modelling. The questions 
connected to experimental researches, questions of correction of the plan of works also are 
discussed, from the point of view of realization of additional quantum-chemical researches. 
 
Problems encountered and suggestions to remedy 
We hope in the near future to discuss the last results received during work under Project. 
 
Perspectives of future developments of the research/technology developed 
We hope to continue our researches in framework collaboration with Air Force Research Laboratory. 

Attachment.  Papers and reports published during present stage of work 
1. Lurie S., Belov P., Tuchkova N.  The Application of the multiscale models for description of the 

dispersed composites// Int. Journal "Computational Materials Science" A., 2004, 36(2):145-152. 
2. Sergey A. Lurie  and  Alexander L. Kalamkarov  General Theory of Defects in Continuous Media// Solid 

and structures, 2005,(accepted for print) 
3. Evtushenko Y.G, Lurie S., Volkov-Bogorodsky D, Zubov V. I.  Numerical - analytical modelling of scale 

effects at research of deformations for disperse reinforced nanocomposites with use of the block method 
of multifields//Comput. Math. And Math Phys. 2005 (accepted for publication) 

4. Obraztsov I.F., Lurie S.A., Belov P.A., Volkov-Bogorodsky D.B., Yanovsky Yu.G., Kochemasova E.I., 
Dudchenko А.А., Potupcik Е.М., Shumova N.P. Elements of theory of interphase layer. Composite 
Mechanics and Design, 2004, v.10, N3, pp.596-612. 

5. Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N,  Nanomechanical Modeling of the Nanostructures 
and Dispersed Composites, Int. J. Comp Mater Scs  2003; 28(3-4):529-539 

6. Lurie, P.A. Volkov-Bogorodskii D.B.and N.P. Tuchkova N. P, Mathematical model of the interphase 
layer. Mathematical and numerical  modeling of the composites// Int. Symp. On Trend in applications of 
Mathematics to Mechanics (STAMP”2004) Aug. 2004, Seeheim, Germany. pp.28-29 

7.  Lurie S., Hui D. and Kireitseu M. Multiscale Modeling of the Interphase Layers in the Mechanics of 
Materials, Proceedings Book of 11th International Conference on Composites/Nano Engineering, Hilton 
Head, S. Carolina, August 8-14, 2004. pp. 784-786  

8. Lurie S., Leontiev A., Tuchkova N. One algorithm of the solution of the fracture mechanics problems for 
the finite elastic bodies//Mechanics of composite materials and structures. 2004, v.10. N3   

9. S A Lurie, N P Tuchkova, V I Zubov The Application of the Interphase Model for the Description of the 
Filled Composite Properties with Nanoparticles. Identification of the Parameters of the Model // The 2nd 
International Conference on Composites Testing and ModelIdentification Comptest 2004 held on the 21st 
- 23rd September 2004, hosted by the Department of Aerospace Engineering, University of Bristol, U.K. 
(http://www.aer.bris.ac.uk/comptest2004/proceedings) 

10. Vlasov A.N. Averaging of mechanical properties of heterogeneous media. Composite Mechanics and 
Design, 2004, v.10, N3, pp.424-441. 

11. Yanovsky Yu.G., Zgaevskii V.E. Mechanical properties of high elastic polymer matrix composites filled 
with rigid particles: Nanoscale consideration of the interfacial problem. Composite Interfaces, 2004, 
v.11,N3, pp.245-261. 

12. Yanovsky Yu.G. Multiscale Modeling of Polymer Composite Properties. International. Journal for 
Multiscale Computational Engineering, 2005, v.3, N2. 

13. Obraztsov I.F., Vlasov A.N., Yanovsky Yu.G. Calculating Method of Strength Properties of 
Heterogeneous Media. Doklady Physics, Moscow, 2005 (in press). 

 245

http://www.aer.bris.ac.uk/comptest2004/proceedings


14. Yanovsky Yu.G. Multiscale Modeling of Polymer Composite Properties. Proceedings of the Sixth World 
Congress on Computational Mechanics, Tsinghua University Press and Springer, Beijing, China, Eds. 
Z.Yao, M.Yuan, W.Zhong, 2004, pp.758-762. 

15. Nikitina E.A., Yanovsky Yu.G. Quantum Mechanical Investigation of the Microstructure and Mechanical 
Characteristics of Nano-Structured Composites. Abstracts of the Sixth World Congress on Computational 
Mechanics, Tsinghua University Press and Springer, Beijing, China, Eds. Z.Yao, M.Yuan, W.Zhong, 
2004, p.626. 

16. Teplukhin A.V. Monte-Carlo Modeling of Atomic and Molecular Mesoscopic Composite Systems. 
Abstracts of the Sixth World Congress on Computational Mechanics, Tsinghua University Press and 
Springer, Beijing, China, Eds. Z.Yao, M.Yuan, W.Zhong, 2004, p.627. 

17. Vlasov A.N., Yanovsky Yu.G. Numerical Modeling to Determine Constitutive Relations of Jointed Rock. 
Abstracts of the Sixth World Congress on Computational Mechanics, Tsinghua University Press and 
Springer, Beijing, China, Eds. Z.Yao, M.Yuan, W.Zhong, 2004, p.628. 

18. Yanovsky Yu.G., Basistov Yu.A., Filipenkov P.A. Problem of identification of rheological behavior of 
heterogeneous polymeric media under finite deformation. Proceedings of the XIV International Congress 
on Rheology, ISBN 89-950057-5-0, The Korean Society of Rheology, 2004, SO18-1 – SO18-3. 

19. Yanovsky Yu.G. Multiscale Modeling of Polymer Composite Mechanical Properties and Behavior. 
Abstracts of the International Conference on Heterogeneous Material Mechanics, Chongqing University 
and Yangtze River/Three Gorges, China, 2004, p.252. 

 
ATTACHMENTS 
Summary of Personnel Commitments  
Dorodnicyn Computing Centre of Russian Academy of Sciences: 
Lurie S.A. (task 2; tasks 4;  tasks 5;   task 6;   task 7);  
Belov P.A.(Tasks 4; 6);  
Evtushenko U.G. (Task 7) 
Moiseev E.I (Task 6.) 
Zubov V.I. (Task 7) 
Tuchkova N.P. (Task 6); 
Goldshtein R.V.(Tasks 4; 5);  
Ustinov K.B. (Tasks 4);  
Perelmuter M.N. (Task 5) 
Institute of Applied Mechanics of Russian academy of Sciences  
Yanovskiy Y.G. (Tasks 1; 5; );    
Levin Y.K. (Task 5);   
Vlasov A.N. (Task 7) 
Volkov-Bogorodskiy D.B. (Task  2). 
Karnet Y.N. (Tasks 1, Tasks 5);   
Filipenkov P.A. (Task 3) 
Nikitina K. A. (Tasks 1)   
Tepluchin A.V. (Tasks 1) 

 
2.  Major Equipment Acquired      -  Non 

 
 
 
 
 
Manager of the Project    Sergey Lurie 
 
 
 

 246


	SF298.pdf
	REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188
	11.  SPONSOR/MONITOR’S REPORT NUMBER(S)


	Final Deliverable.pdf
	Title_12.doc
	FINAL REPORT
	Project Title  #2154 p
	   
	Participating Institutions:
	1. Leading Institution: Dorodnicyn Computing Centre of Russian Academy of Sciences (CCAS)
	2. Supporting Institution: Institute of Applied Mechanics of Russian Academy of Sciences RAS (IPRIM)
	Project Manager       S.A. Lurie
	Director 
	1. Project N  2154 p  The Final Annual Report
	Title:



	Dorodnicyn Computing Centre of Russian Academy of Sciences (CCAS)
	Institute of Applied Mechanics of Russian Academy of Sciences RAS (IPRIM)
	PREFACE



	The Papkovich - Cosserat continuous media model. Vector potential, vector field of defects
	SUMMARY


	SHORT_REPORT_SUMMARY_12.doc
	FINAL REPORT
	SUMMARY
	Project Title  #2154 p
	   
	Participating Institutions:
	1. Leading Institution: Dorodnicyn Computing Centre of Russian Academy of Sciences (CCAS)
	2. Supporting Institution: Institute of Applied Mechanics of Russian Academy of Sciences RAS (IPRIM)
	Project Manager       S.A. Lurie
	Director 
	1. Project N  2154 p  The Final Annual Report
	Title:



	Dorodnicyn Computing Centre of Russian Academy of Sciences (CCAS)
	Institute of Applied Mechanics of Russian Academy of Sciences RAS (IPRIM)




	Chapter1.doc
	1. INFLUENCE OF INCLUSIONS ON EFFECTIVE PROPERTIES OF MATERIALS
	1.1. INFLUENCE OF INCLUSIONS ON EFFECTIVE ELASTIC PROPERTIES OF MATERIALS. TWO-PHASE MODELS
	1.2. INFLUENCE OF THE INTERMEDIATE PHASE TO THE EFFECTIVE ELASTIC PROPERTIES OF THE COMPOSITE
	1.2.1. General
	1.2.2. Real object and proposed model; statements of direct problems
	1.2.3. The first stage
	1.2.3.1. Thick intermediate layer; general
	1.2.3.2. Thick intermediate layer; isotropic model
	1.2.3.3. Thick intermediate layer; anisotropic model
	1.2.3.4. Thin intermediate layer; anisotropic model

	1.2.4. The second stage
	1.2.4.1. Thick intermediate layer
	1.2.4.2. Thin intermediate layer

	1.2.5. Inverse problem; an example
	1.2.6. Summary
	Suggestions on prolongation of the works on the theme.

	1.3. ESTIMATES OF NANOCOMPOSITES SHEAR STRENGTH
	1.4. SUMMARY

	REFERENCES

	Chapter2.doc
	INTRODUCTION
	2.1. THE CAUCHY CONTINUOUS MEDIA MODEL. SCALAR POTENTIAL
	2.3.  THE SAINT-VENANT CONTINUOUS MEDIA MODEL. TENSOR POTENTIAL, TENSOR FIELD OF DEFECTS.
	Note that in the defectless Saint-Venant media the generalized disclinations are absent. In these media, similarly to the Papkovich-Cosserat media with defects, only the conserved dislocations   can be present (the defects of a first rank), as well as two types of scalar defects   and  ;   being the conserved scalar defects, and  - the scalar defects that can be born and disappear on the conserved dislocations  . 
	In the general case when the integrability conditions (2.17) are not fulfilled, the following non-homogeneous equation takes place:
	2.5. CLASSIFICATION OF THE FIELDS OF DEFECTS
	2.6.  CONCLUSIONS

	Test problems

	2.8.1. The Klapeiron’s Theorem for one body with active surface
	Let’s show that the Klapeiron’s Theorem take place for the generalized model of the medium with the Lagrangian:
	For this purpose we shall calculate the value of the Lagrangian in the stationary point (if the all equations and boundary conditions were satisfied) in view of the physical relations (2.53),(2.63). The following sequence of equality takes place:
	2.8.2 Dupre’s equation
	Thus nonclassical boundary conditions get the following kind:
	Let’s define the tensor of adhesive flexibility  , as the solution of the following linear algebraic system:
	Solving this system, we shall receive expression for components tensor of adhesive flexibility through adhesive modules.
	Let's transform last two parts of energy equation in a volumetric part:
	The asymptotic consideration of the boundary problem is rather perspective tool of the approached decomposition the common boundary problem on a classical boundary problem and some amendment to it, connected with defectiveness of medium.
	 The “kinematic” variation principle and analysis of the kinematic structure of the theory of the medium with kept dislocations have resulted in the following boundary problem:
	If  , we will find the decision in the following form:
	In result, the common boundary problem is breaks up into the two independent boundary problems:  the boundary problem for the vector of displacement, which will define the basic asymptotic process and the boundary problem for the tensor of the free distortion, which will define the auxiliary asymptotic process.
	The basic asymptotic process


	Let's give definition of the normalized loadings   and normalized tensors of the modules  
	Then the variational equation can be resulted in a kind:
	The auxiliary asymptotic process

	The definition of the normalized tensors of modules of adhesion  :  

	CONCLUSIONS



	Chapter3_part1.doc
	Introduction
	On base of the continual theory of medium with kept defects the simplest variant of the cohesion interactions and superficial effects model is constructed. This model, represents nonclassical generalization of the theory of elasticity, and takes into account the "main", most essential contribution of scale effects from the point of view offered by authors of the common classification of models with scale effects [Lurie S.A., Belov P.A., Babeshko A.V., Yanovskii Y.G., 2002]. 
	Analytical estimations of properties of a biphase material  near boundaries of the phases, taking into account nonclassical effects are given.  Geometrical and mechanical properties of the cohesion interphase layer were received by the formal way. The interphase layer basic properties are specified.  
	In the given section on the basis of the previous researches the theory of an interphase layer is formulated. The description of the interphase layer theory and some main applications include the following moments:
	- the formal mathematical statement,
	- the physical constitutive equations,  
	- the identification problem of the parameters determining nonclassical effects, 
	- the qualitative analysis of the theory-analytical estimations of properties of an interphase layer, 
	- the qualitative analysis of the theory-estimation of an interphase layer influence on the effective characteristics of a composite,
	Estimation of the average Young elastic modulus  and shear modulus of the interphase layer
	Characteristic of effective length of an interphase layer.
	1. Some initial estimations of an interphase layer
	The  following micro-mechanical description of an interphase layer are  valid:

	3. Estimations of parameters of an individual equivalent homogeneous fragment
	Then the circuit of averaging by Reuss is fair.
	The homogeneous environment is described by the effective moduli of an interphase layer



	3.4. SOME APPLICATIONS AND NEW PARTICULAR RESULTS.
	In this section we marked some  particular results, that are new  in the theoretical sense and fundamental results. 
	3.4.1 Modeling of the cohesion field near top of the crack of the normal opening. (Nonsingular crack). Estimation of a physical constant  .

	Nonsingular solution  for crack (model task).
	Steel
	aluminum alloy
	Titanium steels
	ceramics
	Nonmetallic materials
	soda-lime glass

	3.4.2. About Generalized Eshelby Solution
	3.4.4 On the concept of quantum-mechanical modeling 
	Brief analysis of potencials
	Potentials


	Chapter3_part2.doc
	Chapter3_part3.doc
	Results

	Chapter3_part4.doc
	REFERENCE

	Chapter4_part1.doc
	Chapter4_part2.doc
	Chapter4_part3.doc
	Chapter4_part4.doc
	Chapter5.doc
	Iodine absorption number

	Chapter6.doc
	Chapter7+GeneralRezults+Milestones.doc
	Cooperation with foreign collaborators
	Problems encountered and suggestions to remedy

	Attachment.  Papers and reports published during present stage of work
	ATTACHMENTS
	Summary of Personnel Commitments 

	Institute of Applied Mechanics of Russian academy of Sciences 
	Tepluchin A.V. (Tasks 1)
	2.  Major Equipment Acquired      -  Non




